WIZARDS PERFORM MAGIC ON THE WEB

U.S. $8.99 (Canada $9.99)

ColdFusionJournal.com February, 2000 Volume:2 Issue: 2
\ L !
'.I __,'

Announcing... sxmL

C
"l 2528, 2000 DEV
JavaC(\\ ;

September 24-27, 2000
2000

oy

Develop a set of custom -
tagsthat allow youwto turn
jumibled data pages into

user-friendly wizards

.-"'!

Editorial

Most Wonderful

Time of the Year
Robert Diamond page 5

SQL Corner CFDJ Feature: Improving Web Page

G ic SQL - . .
Taetr)]IirIIEi(p(grt Usab| I |ty W|th leardS Using wizards

el SeiErE [can really increase the usability of your applications Daniel Jean
_ CFDJFeature: The Truth About === ==
et | ColdFusion and DCOM Using them together Elias K. Jo &

SQL in 10 Minutes opens up new possibilities for your Web applications Daniel Del Savio

Emily Kim page 44
<BF>on<CF>: Preserve

" 18
el | Precious Resources—Recycle
ColdFusion & It's good for the development environment § Ben Forta
Generator Stock - - -
Charts CFDJ Special Feature: ColdFusion Basics 3

AEEVESBEREEREE | A hook excerpt on dynamic page development—from the guru Ben Forta

S0 NEWS Journgyman ColdFusion: Hidden | | 40

LS Gemsin4.0.1 what you might have missed Charles Arehart

Yy G 65Nl | Foundations: A Fusebox How-To [

PUBLICATIONS N ;
Using Fusebox to gather requirements

e Hal Helms

AbleCommerce &

The flexible solution for building Electronic shopping sites

:ﬁblel:m"}emg Complete Site Building and Administration

from your browser. g_: -
Build “your_slore.com” with secunes Manchan] Cradil Cand Prosassing. = g :
Maintain inmvantony, add discounts and spacials i Keap your cusiomens e
coming back, Incroasa sales with ooss saling and membership pricing. _I'f_ s
Faor aoourate shipping use AblaShipper™ LIPS aulo-calculator with tha s
fexiie AbleCommerce™ shipping tables. Fulfil document and software = @m
purchases Inough secnanic delvery Check arders oring, panerals e
automated emall and fax notfication (= E
E — =
—— CLIENT LIST —— 5

A e of aur e _._,__-———’ L=

E-shupaing custamar = -
Enterprise Scalability

g for stores of any size.

s 5 il A
Johna Hopking Universiy g - Supy . il SI'.‘I_...luH i
BOC O sarver iconse packs io creals an unlimiled nuembar of
Key Trondc | e shores, Two secunty leveds for systam and marchant
Chsba] adminisiration aliow I5P's io empowar renbers with
Crige | i) online siore design and mainienancs abiities.

_—-— You can also integrate and cushomize

MADD
AbleCammerce™ willh source code,
Lucky Brand Jasns

Compag

Mereury M

Dairy Farmars of Amarica

tgubinhi

Fan,

Hiks

Darth Brosks Easy Design Interface

WEss Universn/UBATean USA for eye catching sites.

NorWest Financial Uplond graphics dinsclly i your saner. Uise prebuill siore

::I' Strah templates for guick design. Customize your wab pages ard
wiyien dynamicaly Add you own HTML, Jeva, Flash or sy

B T S e athar script 10 creatn a uniqua leck. Add commant forms

and sursmys with automated responsaes o collect data

fram your visitom. Track sisHor click Broughs o

LS. Depariment of Treanury debarming s srengiis of your sibs dasign

Intarnatbanal Papsr

Unibed Kadlons

ﬂ":;‘::l” AbleCommerce 5 & perfect example of ColdFusion’s strength amd Mexibility.

Verio -Han Forta, Allaine Corp
Buwilus Army ndvas The system (s sasy lo uge and very Mexible from both & euslomer and

To sew maore, visit ' '
www fopeine.com

24 Haur Flifmia

TRY IT OUT FREE!
Download the 30-Day Evaluation

wwuw.ablecommerce.com

AbleCommearnca, 11700 NE E5th Sireel, Suita 100, Vancouwer, Washingion, 08882, (360) 253-4142
m-:;mummmm:m“mehm E-u-wrn'n;'rndud.nmrﬂurﬂm
ey ba the rademark respaciive companies, § Abls Sobtiors Dorposafion Dramerved

Digital Nation

www.dedicatedserver.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

3

Datareturn

www.datareturn.com

4 CFDJ FEBRUARY www.ColdFusionJournal.com

A

EDITORIALADVISORY BOARD

STEVEN D. DRUCKER, JIM ESTEN, BEN FORTA,
STEVE NELSON, RICHARD SCHULZE, PAUL UNDERWOOD

EDITOR-IN-CHIEFROBERT DIAMOND
ART DIRECTORJIM MORGAN
EXECUTIVE EDITORM’LOU PINKHAM
PRODUCTION EDITORCHERYL VAN SISE
ASSOCIATE EDITORNANCY VALENTINE
PRODUCT REVIEW EDITORTOM TAULLI
TIPS & TECHNIQUES EDITORMATT NEWBERRY

WRITERS IN THIS ISSUE

DANIEL DEL SAVIO, ROBERT DIAMOND, BEN FORTA,
HAL HELMS, DANIEL JEAN, ELIAS K. JO, EMILY KIM,
DAVID SCHWARTZ, ANDREW STOPFORD

SUBSCRIPTIONS

SUBSCRIBE@SYS-CON.COM
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,
PLEASE SEND YOUR LETTERS TO
SUBSCRIPTION DEPARTMENT.

SUBSCRIPTION HOTLINE 800 513-7111
COVER PRICE $8.99/ISSUE
DOMESTIC $79/YR. (12 ISSUES)
CANADA/MEXICO $99/YR.
OVERSEAS $129/YR
BACK ISSUES $12 EACH

PUBLISHER, PRESIDENT AND CEOFUAT A.KIRCAALI
VICE PRESIDENT, PRODUCTIONJIM MORGAN
VICE PRESIDENT, MARKETINGCARMEN GONZALEZ
ACCOUNTING MANAGERELI HOROWITZ
ADVERTISING ACCOUNT MANAGERROBYN FORMA
ADVERTISING ASSISTANTMEGAN RING
ADVERTISING ASSISTANTCHRISTINE RUSSELL
GRAPHIC DESIGNERALEX BOTERO
GRAPHIC DESIGN INTERNAARATHI VENKATARAMAN
WEBMASTERBRUNO Y. DECAUDIN
WEB EDITORBARD DEMA
WEB SERVICES INTERNDIGANT B. DAVE
CUSTOMER SERVICEANN MARIE MILILLO
JDJ STORE.COMJACLYN REDMOND
ONLINE CUSTOMER SERVICEAMANDA MOSKOWITZ

EDITORIALOFFICES

SYS-CON PUBLICATIONS, INC.39 E. CENTRAL AVE.,
PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

COLDFUSION DEVELOPER’S JOURNAL (ISSN #1523-9101)
IS PUBLISHED MONTHLY (12 TIMES A YEAR)
FOR $49.99 BY SYS-CON PUBLICATIONS, INC.,
39 E. CENTRAL AVE., PEARL RIVER, NY 10965-2306.

POSTMASTER
SEND ADDRESS CHANGES TO:
COLDFUSION DEVELOPER’S JOURNAL
SYS-CON PUBLICATIONS, INC.
39 E. CENTRAL AVE., PEARL RIVER, NY 10965-2306

© COPYRIGHT
COPYRIGHT © 2000 BY SYS-CON PUBLICATIONS, INC.
ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE
REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM,
WITHOUT WRITTEN PERMISSION.

FOR PROMOTIONAL REPRINTS, CONTACT REPRINT COORDINATOR.

SYS-CON PUBLICATIONS, INC., RESERVES THE RIGHT TO REVISE,
REPUBLISH AND AUTHORIZE ITS READERS TO USE
THE ARTICLES SUBMITTED FOR PUBLICATION.

WORLDWIDEDISTRIBUTION
BY CURTIS CIRCULATION COMPANY 739 RIVER ROAD,
NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

DISTRIBUTEDIN USA
BY INTERNATIONAL PERIODICAL DISTRIBUTORS
674 VIA DE LA VALLE, SUITE 204, SOLANA BEACH, CA 92075
619 481-5928

ALL BRAND AND PRODUCT NAMES USED ON THESE PAGES
ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS
OF THEIR RESPECTIVE COMPANIES.

I(SYS- CON

PUBLICATIONS

The Most \Wenderful Time of the Year

BY ROBERT DIAMOND

kay, that title might be considered about two months

late by some, but please read on. For some people the

most wonderful time of the year falls in the holiday sea-
son when friends, family and - best of all — presents sur-
round them. For ColdFusion developers, though, this time
of the year is proving to be much more exciting and it’s just
getting started. So far we’ve got the release of ColdFusion 4.5 — already with it’s
first little bug patch released, which is definitely a rite of passage for many new
products these days. Some of the most anticipated products are Allaire Spectra,
which has already shipped, and ColdFusion for Linux, which is in its final beta
stages and will soon be out. If the beta is any indication of what’s to come, all
those people who are anti-NT will soon be very happy. These new product
releases from Allaire and others are just one indication of what’s happening in
the industry.

If traffic on the CF hot spots on the Net are any indication, the use of Cold-
Fusion is multiplying exponentially. This is great for the seasoned developer
because it means more add-ons, more tags, more support on ISPs and ulti-
mately a greater product base to draw from while developing. The more the
merrier! To add to all the exciting news and announcements in the industry, we
here at CFDJ have some of our own as well...

Readers’ Choice Awards - Voting Has Begun!

Voting for the first annual ColdFusion Developer’s Journal Readers’ Choice
Awards began on February 1 and will run until September 1. | personally am
very excited about the awards, because unlike most other accolades given out
in the software industry, the Readers’ Choice Awards represent the true opinion
of readers and developers...of you, the people whose opinions really count. Cat-
egories represented in the awards include Best Book, Best Consulting Service,
Best Custom Tag, Best Database Tool, Best Design Service, Best E-Business Soft-
ware, Best Education and Training, Best Testing Tool, Best Web Development
Tool, Best Web Hosting, Best Web Performance Tool, Best Web Site. These cate-
gories were chosen by our editors and echoed by the companies that nominat-
ed products. They cover just about everything that’s available, and the final
results when announced should provide a clear view of the best of the best.

The voting form is located at www.sys-con.com/coldfusion/readers-
choice2000. As I'm sure you'll notice immediately, the entire system was devel-
oped using ColdFusion. J Live voting updates are available on the Web site,
along with graphs charting the progress. The awards will be announced and
presented to the winners at the Allaire conference in September.

Starting with This Issue...

You’ll notice an ongoing feature series starting with this issue: “A Beginner’s
Guide to ColdFusion.” Due to reader demand to cover some beginners' topics
along with the advanced ones we hit on every month, we’ll draw material from
Ben Forta’s highly successful The Coldfusion 4.0 Web Application Construction
Kit. For CF old-timers it'll be a nice trip down memory lane or a good way to
brush up on some simple concepts that sometimes can get lost in the mix. For
the newbies it should be a great way to start getting up to speed, bridging the
gap between beginner and advanced.

Until next time... %,

ABOUT THE
AUTHOR

Robert Diamond is
editor-in-chief of
ColdFusion Developer’s
Journal.

Lot

FEBRUARY CFDJ 5

8

Yt 0 - = il
" - CFDJ FEATURE
§ F 1 f. i .1.""' . i

w

ust about everyone who
uses a Windows-based
system is familiar with
the wizard metaphor.
The wizard is a series of screens,
each one asking questions and
gathering data. The collected data
the final
screen, which means the user can

isn’t submitted until

go backward or forward through
the screens and adjust the data
appropriately. Since users are
already familiar and comfortable
with this metaphor, using wizards
can truly increase the usability of
your applications.

6 CFDJ FEBRUARY

M WiE

Develop a set of custom tags that allow you to turn
jumbled data pages into user-friendly wizards

BY DANIEL JEAN

The wizard metaphor lends itself fairly
well to the Web except for two problems: (1)
how to save temporary information (state)
in a stateless environment, and (2) control-
ling the navigation logic on each wizard
page. Both problems can be handled quite
nicely with custom tags, structures and
WDDX. The final result is a set of tags that
allow you to quickly and easily turn your
data-gathering pages into standardized,
user-friendly wizards (see Figure 1).

Requirements
Before we rush off to start coding, we

should do some basic analysis and design

work. Here’s a list of requirements for the tags:

1. Setting up, initializing and using the
wizard should be easy.

2. Each screen needs to be created with
data-collection fields only; the tag
should take care of navigation and
state management.

3. Every screen should have a Cancel
button.

4. Every screen but the first one should
have a Back button.

5. Every screen but the last one should
have a Next button.

6. The last screen should have a Finish
button that calls a final processing
page. At that point, all collected data
should be easily accessible by the
developer.

7. The temporary saving of the field values
should be invisible to the developer.

8. There should be no reliance on cookies
or URL variables, thus no session vari-
ables.

How About a Strategy?

We can solve the first requirement by
using the parent/child tag architecture. A
good example of this is the ColdFusion
<CFHTTP> tag. Setting up and initializing
the <CFHTTP> tag would be tedious and
complex if not for its child <CFHTTPPA-
RAM> tag. Why don’'t we create a set of
parent/child tags to collect the informa-
tion needed for our wizard? We'll call the
parent tag <CF_WIZARD> and the child
tags <CF_WIZSCREEN> and <CF_WIZ-
FIELD>.

www.ColdFusionJournal.com

Once we have all the necessary informa-
tion, we need to get it into the developer’s
forms. One way to accomplish this is to
simply take over the whole form by creating
a replacement for the <FORM> tag. If we
have control over the form, we can add
navigation buttons as necessary and con-
trol their actions using JavaScript. We can
also sneak some hidden fields into the form
to help us save state without the user’s real-
izing it. We'll call this tag <CF_WIZFORM>.

We need to save two separate pieces of
information from page to page. First, we
need to pass a list of the screens and the
order in which they should be displayed.
We can do this by passing a comma-sepa-
rated list of URLs in a hidden field. Sec-
ond, we need to keep track of all the fields
and their current values. ColdFusion uses
structures to track URL variables, CGI
variables and Form fields, so we might as
well use a structure to track our wizard
fields. Developers are familiar with this
format, so let’s take advantage of it and
make the tag as user-friendly as possible.
The one problem with using a structure is
that it can’'t be passed easily from page to
page - this is where WDDX comes in. It
allows us to serialize a structure into one
long string of XML (which can be passed
from page to page), then deserialize that
string later into the original, fully featured
structure (see Figure 2).

Let’s Gather Some Data

The first step is to create a child tag that
collects information about the fields we
want the wizard to track — specifically, the
name of the field and a default value for
each field. To do this, create the file wiz-
field.cfm and save it to the /cfusion/cus-
tomtags/ directory. Now wizfield.cfm can
be accessed by calling <CF_WIZFIELD>.
For the remainder of the article I'll refer to
the tag name rather than the actual file
name.

The <CF_WIZFIELD> tag consists of
only three lines of code:

<CFPARAM Name="Attributes.Name"

Default=""">
<CFPARAM Name="Attributes.Default”
Default=""">

<CFASSOCIATE BaseTag="CF_WIZARD"
DataCollection="FieldArray'>

The first two lines collect a name and
default for each field through the tag’s
attributes. The third line sets a BaseTag (or
parent tag) and saves the attributes col-
lected into the array specified, which will
be available to the parent tag. The array is
going to have one entry for each child tag,
so if there are three <CF_WIZFIELD> tags
there will be three corresponding entries

www. ColdFusionJournal.com

First Marna: Addrass: Compan
[John 995 Fublic Way Galilen Davalopmant
Middle Naina: City: Titla:
’D_ Wiywhiata Davalopar
Last Nama Stata: Work Phona:
Fublic ’ﬁ [404-877-0187
Zip:
33333
Meat > Cancel <Back | Mests Cancel Finish Cancel
Mtypical wizard
in the array. Now the complex part: each ThisTag.ExecutionMode is used to

entry in the array is actually a structure
describing the attributes passed to that
child tag. Figure 3 illustrates the array and
the structures it holds.

Notice the FieldArray has three entries
(since we used three <CF_WIZFIELD>
tags), and each entry has a structure
describing the attributes that were passed
to <CF_WIZFIELD>.

The <CF_WIZSCREEN> tag (create
wizscreen.cfm and save in /cfusion/cus-
tomtags/) is similar to the <CF_WIZ-
FIELD> tag except that we collect only
one attribute, the URL. Also, we save the
attributes in an array called ScreenArray
rather than the FieldArray we specified
for the <CF_WIZFIELD> tag. This is
done using the same <CFASSOCIATE>
tag but we specify a different DataCol-
lection:

<CFASSOCIATE BaseTag="CF_WIZARD"
DataCollection="ScreenArray'>

The complete code for the foregoing
snippet is in Listing 1. Figure 4 illustrates
the ScreenArray and its structures.

Now that both child tags are collecting
data, we can create the <CF_WIZARD> par-
ent tag to use the data. As the parent, it has
two distinct jobs. It collects the final bits of
information we need and then, using its
child tags, it starts the wizard process. The
<CF_WIZARD> tag gets called twice, once
when it's opened and once when it’s closed,
so we can collect the additional informa-
tion when it’s opened via passed-in attrib-
utes. Then, when the tag is closed, we can
start the wizard process.

The two additional pieces of informa-
tion the <CF_WIZARD> tag collects are
the FinishURL and the CancelURL. These
will be the URLs the wizard loads if the
Finish or Cancel button is pushed. (See
Listing 2 for the complete source code for
the following snippet.)

<CFIF ThisTag.ExecutionMode IS "start">
<CFPARAM Name="Attributes.FinishURL"
Default="">
<CFPARAM Name="Attributes.CancelURL"
Default="#CGI .Script_Name#'">

determine whether this is the start (or
open) tag call or whether it’s the end (or
close) tag call. If it’s the start, capture the
FinishURL and CancelURL attributes, then
we can set up and initialize the Fields struc-
ture and the Screens list. The two child tags
collected this information for us and saved
them in separate arrays. The arrays are
accessed using the thisTag scope, so
thisTag.FieldArray holds the <CF_WIzZ-
FIELD> data and thisTag.ScreenArray
holds the <CF_WIZSCREEN> data. Let’s
continue our <CF_WIZARD> tag by getting
the FieldArray information and putting it
into a Fields structure (see Listing 2 for
complete source code).

<CFSCRIPT>
Caller.Fields = StructNew();
for(i=1;
i LTE ArrayLen(thisTag.FieldArray);
izi+l)
{

FieldAttributes=thisTag.FieldArray[i];
Structlnsert(Caller_Fields,
FieldAttributes.Name,
FieldAttributes.Default);
}
</CFSCRIPT>
<CFWDDX Action=""CFML2WDDX"
Input="#Caller _Fields#"
Output="FieldwDDX"">

Create a structure called Fields and use
the caller scope so the calling page has
access to the new structure, then set up a
loop that goes through each entry in the
FieldArray. Remember, this is an array of
structures, so each entry holds a structure.
Before getting to the actual information,
we have to get the structure itself. To do
this we use the FieldAttributes variable to
temporarily hold each structure. Once we
have the structure from this entry, we use
it to insert key/value pairs into our Fields
structure. The last thing we do with our
field information is take our newly created
structure and serialize it into a WDDX
packet using the <CFWDDX> tag. Having
the structure in this form will allow us to
stuff it into a hidden form field and pass it
along to each of our wizard pages.

FEBRUARY CFDJ 7

. Initialization Page

 Final Frlnsiﬁjagn-_ |

1. Galleet:
Screen URLs
Field names
Field defaults.

Cancel R
&El}]]}ﬂ

Pass:
Fields struet.
Screens list

% | 1. Final field values
A" | available far processing
Pass: O
Fields struet.
Screens list

<CF_WIZFIELD Name=*FirstName" Dafault-:“dohn">
<CF_WIZFIELD Name="MiddleInit" Default="Q">
<CF_ wfzr:nm Name="LastName" Defa.ult'-“Doe"‘

FieldArray[1]

Structure Name="FirstName".Structure.Default= "John

g FieldArray[2]

Structure.Name="Middlelnit".Structure.Default="Q"

FleIdArray[Sl

NN The FleIdArray

The next step in initializing the wizard
is to take all the data gathered by the
<CF_WIZSCREEN> tag and put it into an
ordered, comma-separated list (see com-
plete code in Listing 2).

<CFSCRIPT>
Screens =
for (i=1
i LTE ArrayLen(thisTag.ScreenArray);

izi+l)

{
ScreenAttributes=thisTag.ScreenArray[i];

Screens=ListAppend(Screens,

ScreenAttributes.URL);

}

Screens=ListPrepend(Screens,

Attributes.CancelURL);

Screens=ListAppend(Screens,

Attributes.FinishURL);
</CFSCRIPT>

We access the ScreenArray the exact
same way we access the FieldArray, except
this time we create a list instead of a struc-
ture. The list is created in the order of the
<CF_WIZSCREEN> tags, so you can change
the screen order by simply changing their
order. Since Screens is a list of URLs, we can
prepend the CancelURL and then append
the FinishURL to the list. This saves us from
having to put them in their own hidden
fields. Now they’ll just go right along with
the rest of the screen information that’s
passed page to page.

The last thing the <CF_WIZARD> tag

8 CFDJ FEBRUARY

Structure.Name="LastName".Structure.Default="Doe"

does is actually start the whole wizard
process. This is done by creating a form,
stuffing our Fields and Screens into hid-
den fields, and using JavaScript to “auto-
submit” the form (see also Listing 2).

<FORM Name="WizForm" Method="Post"
Action="#ListGetAt(Screens,2)#">
<INPUT Type="hidden"™ Name="WizFields"
Value="#HTMLEditFormat(FieldWDDX)#">
<INPUT Type="hidden" Name="WizScreens"
Value="#Screens#">
<INPUT Type="hidden" Value="2"
Name="WizCurrentScreen">
</FORM>
<SCRIPT Language="javascript>
document.fgColor = document.bgColor;
document._WizForm.submit();
</SCRIPT>

The first thing you’ll notice about the
<FORM> is that we set the Action
attribute equal to the second item in our
Screens list. Remember, the CancelURL is
prepended to the Screens list, so the first
screen we want to show is actually the
second URL in the list. Next, pack the data
into hidden fields so the first screen has
access to them. Notice that we use the
HTMLEditFormat function to format the
WDDX packet. Since WDDX uses XML, we
have to format the packet before putting
itinto a hidden field; otherwise the HTML
parser will be confused by the XML tags
and “your results may vary.” Finally, we
use JavaScript to submit the form.

Using the Data

The wizard process has been started.
Now we need to control the wizard pages
themselves. We've already said that, to
control the navigation and state issues,
we'll replace the <FORM> tag with our
own <CF_WIZFORM> tag. Naturally, the
<CF_WIZFORM> tag will be called twice,
once on start and once on end, just like
the <FORM> tag. When it’s called as the
starting or opening tag, we update our
Fields structure to account for any
changes made on the previous screen,
then do our duty as a replacement for the
<FORM> tag and create a form (see List-
ing 3 for complete source code).

<CFWDDX Action=WDDX2CFML
Input="#FORM.WizFields#"
output="Caller.Fields">
<CFSCRIPT>
for(thisKey in Caller.Fields)
{
if(isDefined("FORM." & thisKey))
Caller._Fields[thisKey] =
evaluate("FORM.™ & thisKey);
}
</CFSCRIPT>
<CFWDDX Action=""CFML2WDDX"
Input="#Caller.Fields#"
Output="FieldWDDX">

We deserialize our WDDX packet back
into a working Fields structure, then loop
through every key in Fields and determine
whether there’s a matching key in the
Form structure. If there is, this field was on
the previous page and must be updated in
our Fields structure. After all the Fields
have been checked and updated, we seri-
alize Fields back into aWDDX packet so it
can be passed on to the next screen. The
last thing we do in the start section of
<CF_WIZFORM?> is output a <FORM> and
create our needed hidden fields, remem-
bering to use the HTMLEditFormat to
save our new WDDX packet.

The main job of the end section of the
<CF_WIZFORM> tag is to control naviga-
tion. The first step is to show only the
appropriate buttons. Using the Screen list
and the CurrentScreen value from our hid-
den fields, we determine whether or not
the Back, Next or Finish buttons are dis-
played, then use JavaScript to determine
which screen is shown next. I've put the
JavaScript inline in the <INPUT> tag, but a
function could be written that accom-
plishes the same thing. The JavaScript for
the next button looks like this (see Listing 3
for complete code):

document.WizForm.action=
"#ListGetAt(FORM.WizScreens,
FORM.WizCurrentScreen + 1)#";

www.ColdFusionJournal.com

Ektron

www.ektron.com

www. ColdFusionJournal.com FEBRUARY CFDJ 9

document.WizForm_WizCurrentScreen.value =
#evaluate("FORM._WizCurrentScreen + 1%)#

If the Next button is pushed, the next
screen in the Screens list should be dis-
played. We determine the URL by get-
ting the CurrentScreen + 1 from the
Screens list. Then, by setting the action
property of the form, we force the form
to load the next screen. If the Back but-
ton is pressed, the same code is used
except we get the element at Cur-
rentScreen - 1. The JavaScript for the
Cancel and Finish buttons simply uses
the first and last URLs in the Screens list,
since that’s where we stored them in the
<CF_WIZARD> tag.

Our First Wizard

Our first requirement states that these
tags have to be quick and easy to use, but
so far they seem complex and difficult. In
fact, we've done quite a few coding tricks
and used some advanced ColdFusion
technologies such as WDDX and struc-
tures. However, this is the beauty of cus-
tom tags. The user of the custom tag can
get all the benefits of the tag without
understanding or even knowing about the
complexity built into it. To prove this, let’s
take our newly created custom tags and
discover how easy they are to use.

1. Create an initialization page.

<HTML><BODY>
<CF_WIZARD FinishURL="ShowUser.cfm">
<CF_WIZFIELD Name="FirstName"
Default="John">
<CF_WIZFIELD Name="LastName"
Default="Doe">
<CF_WIZFIELD Name="Address"

Default=""">
<CF_WIZFIELD Name="Phone"
Default=""">

<CF_WIZSCREEN URL="GetName.cfm">
<CF_WIZSCREEN URL="GetAddress.cfm">
</CF_WIZARD>
</BODY></HTML>

This page describes all the fields we
want to collect and their default values. It
also describes the screens and the order
in which they’ll be shown. Save this file as
GetUserStart.cfm.

2. Create your data-collection pages.

<HTML><BODY>

<CF_WIZFORM>

<CFOUTPUT>First Name:

<INPUT Name="FirstName"™ Type="Text"
Value="#Fields.FirstName#">

Last Name:

<INPUT Name="LastName" Type="Text"

10 CFDJ FEBRUARY

="/wiz/UserName.cfm">
. ' zscnznf URL="/wiz /UserAddr. c:E;n":r
. <CF_WIZSCREEN URL="/wiz/UserWork. cfm">
<CF_WIZSCREEN mn'lal,'-yizlother cfm">

ScreenArray[ﬂ

Structure.URL= “fwlszsarName cfm"

ScreenArray[2]

Structure.URL="/wiz/UserAddr.cfm"

ScreenArray[3]

Structure.URL="/wiz/UserWork.cfm"

ScreenArray|[4]

Structure.URL="/wiz/Other.cfm"

Pt W ok A
L .TJF.:IE |'.r-|
Pt | Comezwl | tBack | Fran Canesl | -

MOur first wizard

Value="#Fields.LastName#">

</CFOUTPUT>
</CF_WIZFORM>
</BODY></HTML>

This page displays the form fields, but
instead of using the regular <FORM> tag, use
the <CF_WIZFORM> tag. Save this file as
GetName.cfm, then create another file called
GetAddress.cfm. Change the <INPUT> tags
to capture the Address and Phone fields (set
their name to Address and Phone, then
set their values to #Fields.Address# and
#Fields.Phone#, respectively). Also, change
the captions before the <INPUT> to reflect
an appropriate title (Address and Phone, for
example).

3. Create your final processing page.

<HTML><BODY>

<CF_WIZFORM>

<CFOUTPUT>

First Name: #Fields.FirstName#

Last Name: #Fields.LastName#

Address: #Fields.Address#

Phone: #Fields.Phone#

</CFOUTPUT>

</BODY></HTML>

All the collected fields, with their final
values, will be available via the Fields
structure on the final processing page. In
this case the final values will be displayed
on the screen. Save this as ShowUser.cfm.

Now you need to call the initialization
page, GetUserStart.cfm, from your browser
—it'ssimple to set up and use (see Figure 5).

Benefits

You don't have to look very far on the
Web to find pages that are just eye candy —
developers trying to use the latest technol-
ogy to do the latest visual effect. However,
developing real business applications
means we need to look away from the eye
candy and toward solutions that are user-
friendly and easy to use. We can do this by
using intuitive interface components (a
shopping cart means buy something, a
trash can means delete something) or de
facto standards (red means stop, green
means go). Using a de facto metaphor
such as the wizard makes users feel com-
fortable because they instantly under-
stand how to use the interface and what to
expect from the application. Comfort level
increases, usability increases, understand-
ing increases — and if you use these tags
your coding time decreases. Sounds like a
winner to me! {%,

ABOUT THE AUTHOR
Daniel Jean is the CTO and cofounder of Galileo
Development Systems, a provider of Web-based software
solutions for the consulting and contract staffing
industries. Daniel has worked in the client/server
and Web-development industry for 10 years.

1l djean@galileodev.com 1l

www.ColdFusionJournal.com

Enteract

www.enteract.com

www.ColdFusionJournal.com FEBRUARY CFDJ 11

LISTING 1: WizScreen.cfm

<CFPARAM Name="Attributes.URL" Default=""">
<CFASSOCIATE BaseTag=""CF_WIZARD"
DataCol lection="ScreenArray'>

LISTING 2: Wizard.cfm

<CFIF ThisTag.ExecutionMode is "start">
<CFPARAM Name="'Attributes.FinishURL" Default=""">
<CFPARAM Name="Attributes.CancelURL"
Default="#CGI .Script_Name#'>
<CFSET thisTag-FieldArray = arrayNew(1)>
<CFELSE><!--- This is </CF_WIZARD> --->
<l--- Setup Fields struct and convert to WDDX --->
<CFSCRIPT>
Caller.Fields = StructNew();
for (i=1; i LTE ArrayLen(thisTag.FieldArray);
i=i+l)
{

FieldAttributes = thisTag.FieldArray[i];

Structinsert(Caller.Fields,
FieldAttributes.Name,
FieldAttributes.Default);

}
</CFSCRIPT>
<CFWDDX Action="CFML2WDDX" Input="#Caller.Fields#"
Output="FieldWDDX">
<CFSET na = StructClear(Caller.Fields)>

<1--- setup Screens list --->
<CFSCRIPT>
Screens = ""';
for (i=1; i LTE ArrayLen(thisTag.ScreenArray);
i=i+l)
{

ScreenAttributes = thisTag.ScreenArray[i];
Screens = ListAppend(Screens,
ScreenAttributes.URL);
}
Screens = ListPrepend(Screens,
Attributes.CancelURL);
Screens = ListAppend(Screens,
Attributes._FinishURL);
</CFSCRIPT>
<l--- Autosubmitting form with hidden fields --->
<CFOUTPUT>
<FORM Name="WizForm" Method="Post"
Action="#ListGetAt(Screens,2)#">
<INPUT Type="hidden" Name="WizFields"
Value="#HTMLEditFormat(FieldWDDX)#">
<INPUT Type="hidden" Name="WizScreens"
Value="#Screens#">
<INPUT Type="hidden" Name="WizCurrentScreen"
Value="2">
</FORM>
<SCRIPT Language="javascript'>
document.fgColor = document.bgColor;
document._WizForm.submit();
</SCRIPT>
</CFOUTPUT>
</CFIF>

<CFSET ButtonWidth = 90>
<CFIF ThisTag.ExecutionMode is "start">
<CFSET Caller.Fields = StructNew()>
<l--- deserialize wddx into Field struct --->
<CFWDDX Action=WDDX2CFML input="#FORM.WizFields#"
output="Caller.Fields">

<l--- Update Fields struct for all fields
submitted via FORM --->
<CFSCRIPT>

for (thisKey in Caller.Fields)

{
if(isDefined("FORM." & thisKey))

Caller.Fields[thisKey] = evaluate('FORM." &
thisKey);

}

</CFSCRIPT>

<l--- serialize Fields structure back into wddx
packet and then hide in hidden field --->

<CFWDDX Action="CFML2WDDX" Input="#Caller_Fields#"

Output="FieldWDDX">

<CFOUTPUT>

<FORM Name="WizForm" Method="Post">

<INPUT Type="hidden" Name="WizFields"
Value="#HTMLEditFormat(FieldWDDX)#">

<INPUT Type="hidden" Name="WizScreens"
Value="#FORM.WizScreens#">

<INPUT Type="hidden" Name="WizCurrentScreen"

Value="0">
</CFOUTPUT>
<CFELSE><!--- This is </CF_WIZFORM> --->
<l--- Add appropriate navigation buttons --->
<CFOUTPUT>

<TABLE border=0 cellspacing=0 cellpadding=0>
<TR><TD width=#ButtonWidth# valign=middle
align=right> </CFOUTPUT>
<CFIF FORM._WizCurrentScreen GT 2>
<CFOUTPUT><INPUT Type="'Submit" Name="WizBack"
Value=" < Back " AccessKey="B"
onClick="document.WizForm.action="#ListGetAt(FORM._WizScreens,
FORM.WizCurrentScreen - 1)#";
document._WizForm.WizCurrentScreen.value =
#evaluate("FORM_WizCurrentScreen - 1%)#"></CFOUTPUT>
</CFIF>
<CFOUTPUT></TD><TD width=#ButtonWidth#
valign=bottom
align=left></CFOUTPUT>
<CFIF FORM.WizCurrentScreen 1S
(ListLen(FORM.WizScreens) - 1)>
<CFOUTPUT><INPUT Type="'Submit" Name="WizFinish"
onClick="document.WizForm.action="#ListLast(FORM.Wiz-
Screens)#";
document_WizForm.WizCurrentScreen.value =
#evaluate("FORM_WizCurrentScreen + 1%)#"></CFOUTPUT>
<CFELSE>
<CFOUTPUT><INPUT Type="'Submit" Name="WizNext"
Value="
onClick="document.WizForm.action="#ListGetAt(FORM._WizScreens,
FORM.WizCurrentScreen + 1)#";
document._WizForm_WizCurrentScreen.value =
#evaluate("FORM_WizCurrentScreen + 1%)#"></CFOUTPUT>
</CFIF>
<CFOUTPUT> </TD>
<TD width=#ButtonWidth# valign=middle
align=center>
<INPUT Type="Submit" Name="WizCancel"

Value=" Cancel " He”
onClick="document.WizForm.action="#ListFirst(FORM.Wiz-
Screens)#";
document._WizForm.WizCurrentScreen.value = 2">

</TD></TR></TABLE></FORM>

</CFOUTPUT>

<CFSET na = StructClear(Caller.Fields)>
</CFIF>

The code listing for
this article can also be located at
www.ColdFusionJdournal.com

12 CFDJ FEBRUARY

www.ColdFusionJournal.com

ahift4

www.shift4d.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

13

14

&IDC OV

The Truth About ColdFusion and DCOM

Using them together opens new windows of possibilities
for your Web applications

BY

ELIAS K.
J0

&

DANIEL
DEL SAVIO

CFDJ FEBRUARY

We'll view DCOM through Cold-
Fusion and cover some of the fea-
tures and pitfalls of using these tech-
nologies together. The examples
here are made in conjunction with
Visual Basic’s support of the distrib-
uted interface. By the end of this arti-
cle you should be able to start plan-
ning the framework for your DCOM-
enabled ColdFusion applications.

DCOM is a derivative of COM,
Microsoft’s interface definition
standard. COM provides a medium
for developers to create interopera-
ble interfaces and a means to con-
nect to any COM-compliant ser-
vice, regardless of implementation
language or process space. DCOM
extends COM functionality by pro-
viding distributed services such as
transport, security and directory
services that allow component
interfaces to be accessed anywhere
across a network.

How ColdFusion Accesses
DCOM Services

ColdFusion provides a mecha-
nism to access COM components
through its CFOBJECT tag, which is
used to gain the initial reference for
an external object through COM,
DCOM or CORBA. (COM and
DCOM are used synonymously in
reference to the CFOBJECT tag
because in ColdFusion these types
of objects are identical.)

<CFOBJECT type="COM" class=""
action=""create" name=""xxx'">

Keep in mind that COM compo-
nents are designated with a unique
ID, known as their GUID, each time
they’re compiled. Components are
registered when the GUID is incor-

xtending ColdFusion to incorporate Microsoft's

Distributed Component Object Model (DCOM) is a

powerful way to expand the capabilities of the
application server on the Microsoft platform.

porated into the Windows registry.
The same GUID version must be
registered on the calling and receiv-
ing machine for the DCOM services
to be properly located.

Building DCOM Components
with Visual Basic

DCOM components can be built
using various programming lan-
guages (Java, Visual Basic, Visual
C++, etc.). In this article we’ll cover
the specifics of how to build and
deploy COM objects written in
Visual Basic. When compiling a
Visual Basic 6.0 COM object for
compatibility with the distributed
model architecture, set an addition-
al compilation option in your pro-
ject’s properties — the Remote Serv-
er Files option on the Component
Tab of the Project Properties sheet.

When the time comes to deploy
your compiled DCOM object, it’s
recommended you use Microsoft’s
Package & Deployment Wizard to
create an installation program for
the object. This wizard provides a
simple means for placing and regis-
tering your new DCOM compo-
nent. Remember to install the new
component on any client and serv-
er machines that will be using this
object. The last step in setting up
your DCOM component is to con-
figure its registered settings through
the utility DCOMCNFG.exe provid-
ed with Microsoft’s Visual Studio 6.

In using Microsoft's DCOM con-
figuration utility (DCOMCNFG.EXE),
configuring your newly registered
DCOM obijects is as simple as a few
clicks of the mouse. Launch the
“dcomcenfg” utility through your
Windows command prompt and
find your registered object in the list

of registered components. Select

the new component and click the

Properties button for it. The utility

must be used to configure the client

and server machines where the
component is installed. The follow-
ing are recommendations for how
to initially set your DCOM configu-
rations on each machine.

On the client machine:

e Location tab: Choose only “Run
Application on following server.”
Specify server in textbox.

e Security tab: Set permissions for
who can launch and access your
component.

e ldentity tab:
launching user.”

e End points: Leave defaults.

Choose “The

On the server machine:

e Location tab: Choose “Applica-
tion on this computer.”

e Security tab: Give all necessary
permissions. DCOM won't work
with incorrect permissions.

e Identity tab: Choose “The inter-
active user.”

* End points: Leave defaults.

Passing Variables from
ColdFusion to DCOM

This process has some intrica-
cies that we’ll cover in respect to
Visual Basic components. To sup-
port the interoperability of access-
ing COM components, we use a
process called marshaling to pass
variables to COM. It’s the process of
deconstructing objects and data
types from one implementation
and translating them into another.

In DCOM components, func-
tions accept two types of variables:
primitive and object references.
Primitive data types refer to vari-

www.ColdFusionJournal.com

Eprise

WWww.eprise.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

15

ABOUT THE
AUTHORS

Elias K. Jo is a
consultant with Inventa
Corporation, a
professional services
firm focused on B2B
e-commerce integration.
He has five years of
programming experience
with client/server and
multitier application

projects and is a
Sun-certified Java
Programmer.

Daniel Del Savio, a
graduate of the
University of Notre
Dame, is also a
consultant with Inventa
Corporation. He's

been involved with the
development of several
multitiered and data
processing applications.

P

ables that are string, integers,
booleans and real humber. When
passing primitive data types to a
COM interface, that interface must
be defined to accept the value with
the “ByVal” attribute. When pass-
ing nonprimitive variables or
object variables through COM, the
reference of the variable is passed
and no additional attribute needs
to be set. For example, the follow-
ing code snippet shows how to
declare a Visual Basic function
that’s able to accept the Integer
primitive data type.

Function TestFunction(By Val Para-
meterl As Integer)

End Function

Managing DCOM Objects in
Multiuser Scenarios

Two main issues must be consid-
ered when programming your
DCOM-enabled ColdFusion appli-
cation for multiuser scenarios. The
first is that the instantiation of
remote objects tends to be
resource-intensive and can have
performance implications for your
application. The second is the com-
plication of handling multiple con-
current requests to your remote
object. Because ColdFusion han-
dles user requests in multiple

threads and the ColdFusion server
itself can be loaded on multiple
machines (via load balancing), the
developer must consider whether
the DCOM objects are thread-safe.
Using resource pools to manage your
remote components can help you
through these problems. Resource
pools are a programming paradigm
generally used to manage a limited
number of resources for multiuser
services.

In ColdFusion you can imple-
ment aresource pool manager by fol-
lowing this example: enable applica-
tion-level variables through the
Application.cfm file, then add the fol-
lowing two application variables.

Application.cfm:

<cfparam name="application.recPool"
default="NewArray(1)">

<cfparam
name="application.MAX_POOL_SIZE"
default=5>

These variables are used to hold
the resources and define how many
are to be pooled. The maximum
number of resources should be
defined in terms of how resource-
intensive the components are and
how robust the server is that will be
running them.

Listing 1 is the algorithm for
actually implementing an example

pooling mechanism. As you'll
notice, this algorithm assumes that
the DCOM component is defined
with the “isAvailable” and “setAvail-
ability” functions. Use this snippet
to create a custom tag to manage
your resource pools.

The algorithm will loop through the
pool until a resource becomes avail-
able. It's important that requesters for
pool resources set them to available
once they're done. The resource pool
paradigm is good for handling
resources that are used quickly and
then returned. It doesnt work well
when they're used for an extended
period of time, in which case circum-
stances of deadlock can occur. The
resource pool also solves any concur-
rency issues because it ensures that
no more than one user request
accesses any given resource at the
same time.

Using ColdFusion and DCOM
together opens new windows of
possibility for your Web applica-
tions. However, the many intrica-
cies involved can create hours of
trial and error. With this framework
of knowledge, we hope that using
DCOM can be a viable and painless
solution for expanding your Web
application. \,%,

ELIAS.JO@INVENTA.COM -
DDELSAVIO@INVENTA.COM

LISTING 1

<l--- myResource is the variable that is to be set by
the requesting user

—-_——

<cfparam name="poolCounter" default="1">

<l--- Loop until the variable myResource is set --->
<cfloop condition="Not IsDefined('""'myResource''")">
<l--- If a resource variable is defined then check
its availability --->
<cfif poolCounter It ArraylLen(application.recPool)>

<cftry>
<l--- if the object is available, set myResource.
If not just
continue to loop. --->
<cfset tempResource = application.recPool[poolCounter]>

<cfif tempResource.isAvailable() is "TRUE">
<cfset tempResource.setAvailability("FALSE™)>
<cfset myResource = tempResource>

<l--- The user request is now responsible
to setAvailability

back to TRUE. --->

</cfif>
<cfcatch type="ANY">
<l--- If the object method fails, the remote

object reference
may have been lost, try to recreate a
new object --->

<CFOBJECT type="COM" class="Elias.testDCOM"
action="create"
name="myResource">
<cfset application.recPool[poolCounter] =
myResource>
</cfcatch>
</cftry>
<cfelse>
<l--- Create an object if one is not defined for
a pool location.
Because it is a new object, the check
for availability is
Not necessary. --->
<CFOBJECT type="COM" class="Elias.testDCOM"
action="create"
name="myResource">
<cfset application.recPool[poolCounter] = myResource>
<cfset myResource.setAvailability("FALSE")>
</cfif>
<I--- Increment the pool counter to the next resource
in the pool --->
<cfset poolCounter = poolCounter + 1>
<cfif poolCounter gt application.MAX_POOL_SIZE>
<cfset poolCounter = 1>
</cfif>
</cfloop>

The code listing for
this article can also be located at

www.ColdFusionJdournal.com

16 CFDJ FEBRUARY

www.ColdFusionJournal.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

17

<B

il

)
O

>ON<

>

Preserve Precious Resources—Recycle

BY
BEN
FORTA

CFDJ FEBRUARY

Doing so gave me the chance to
clean up lots of old code (updating
it to use new CF features in the
process) while rethinking the orga-
nization and management of code
to facilitate better reuse of common
code and components.

Code organization and reuse are
important topics, and judging by
lots of code I've seen at customer
sites of late (production code
nonetheless), they are topics that
need clarifying and addressing. So
I'd like to use this month’s column
to share some of these ideas with
you.

Why Reuse?

Programmers love reusing code,
and for good reasons.

e Reusing code can dramatically
cut down development time.
After all, why develop something
from scratch when you can reuse
something written previously?

* Reusing proven code helps write
bugfree applications. Program-
mers are human. We make mis-
takes, and we gradually fix them
when we find them. Why start
with a whole new set of mistakes
when you can leverage the code
with mistakes already fixed? Fur-
thermore, applications that share
common code also share com-
mon code fixes.

e Code that’s properly shared and
reused is far more maintainable.
If you've ever had to update
menu options (images, links,
DHTML code) in multiple appli-
cation pages you know what |
mean.

e Code designed for reuse can be
shared far easier. If another
developer needs to use your
complex drop-down menu code,
invoking an abstracted menu

Recently | gave my personal Web site

(www.forta.com) a much-needed
and long overdue overhaul.

T s _sql syutax. ls dw syn ax, ls ertor. ls _Arg

ull(idw Requestor) ¢ .
t IsValid(idw _Reques

inter {hmglaasll
: idw

object is far simpler than nitpick-
ing and dissecting an application
page with that code embedded in
it.

e And finally, the very act of writing
code with reuse in mind helps
organize code properly.

Well-organized code, code bro-
ken into small, bite-size chunks,
code thought through and designed
to be reusable - that’s the kind of
code that separates experienced
professional developers from
beginners.

That’s true of any language, and
CFML is no different. In fact, CFML has
several language features designed
with code organization and reuse in
mind.

The <CFINCLUDE> Tag
ColdFusion’s <CFINCLUDE> tag
has been part of CFML for a long
time now. It is used to perform
server-side includes. When Cold-
Fusion encounters a <CFIN-
CLUDE> in your code, it includes
the appropriate CFM file right then
and there at the location of the
<CFINCLUDE>, as if the included

ls_sql syntax = lnv_string.of

1s sql_syntax, "---"", "-!
for 11 Arg = 1 to 11 mmm:ga
// Copy the SQL so we can
ls TmpSyntax = Lower (ls_s

code had been typed there directly.

And that’s important to under-
stand. ColdFusion processes the
included file as if it were part of the
calling page. This means that the
two pages share the same scope, so
any variables or queries defined
before the <CFINCLUDE> are visi-
ble (can be read and written to)
within the included code. Similarly,
any variables or queries defined
within the included page are visible
in the calling page to any code after
the <CFINCLUDE> tag.

This also means that there is no
protection of data. Within an includ-
ed page you can (deliberately or inad-
vertently) change or overwrite data in
the caller page. In fact, as <CFIN-
CLUDE> has no formal mechanism
for passing data (parameters or
attributes) to included code, setting
variables explicitly with <CFSET>
before a <CFINCLUDE> is often nec-
essary.

This is avery important behavior
to bear in mind when using <CFIN-
CLUDE>, and it is not an oversight
or bug. Rather, this behavior is
intended and by design. Because
included pages share the same

www.ColdFusionJournal.com

Allaire

www.allaire.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

19

20

SON< >

CFDJ FEBRUARY

scope, ColdFusion’s overhead in
including files is minimal. This
translates into extremely fast per-
formance. In fact, you’ll notice no
real difference in execution time
between a single thousand-line
page and 10 included pages of 100
lines each.

So when should (and when
shouldn’t) <CFINCLUDE> be used?
Obviously, if all you’re doing is grab-
bing content to be sent to the client,
a <CFINCLUDE> makes a lot of
sense. For example, my site uses a
collection of JavaScript functions
that | want available to most pages.
Rather than copy all that JavaScript
into each file, | simply insert the fol-
lowing line into each file:

<CFINCLUDE
TEMPLATE="/common/jsfuncs.cfm">

This way, ColdFusion inserts the
entire jsfuncs.cfm file into all the
pages that need it.

But if your included code does
any form of CFML-based program-
matic processing or manipulation,
it might not be a candidate for use
with <CFINCLUDE>. For example, |
have a block of code that surrounds
the body of each page, code that
contains header and title informa-
tion, menus and toolbars, and
DHTML-related code. If this code
had been static, <CFINCLUDE>
use would be appropriate. But my
code isn't static at all; it has all sorts
of conditional code in it, like logic
to highlight the currently selected
menu option. Code like that, code
that manipulates data (and can
thus inadvertently manipulate data
it shouldn't), code that needs data
passed to it, code that does more
than just include content to be sent
to the client — that kind of code
should not be included with <CFIN-
CLUDE> at all.

To summarize, <CFINCLUDE> is
fast, it’s easy to use and it’s ideally
suited for use with simple code and
content.

Custom Tags

Custom Tags were introduced in
ColdFusion 3, and substantially
enhanced in ColdFusion 4. These
tags provide a mechanism to exe-
cute code without actually includ-
ing it in your page. A Custom Tag
runs in its own scope, soO any

queries or variables defined within
it aren't automatically visible to the
calling code. Similarly, data defined
in the calling code is not automati-
cally visible to code within the Cus-
tom tag.

Unlike <CFINCLUDE>, Custom
Tags have a formal method for pass-
ing data to called code. Like any other
CFML tag, these tags can take attri-
butes, optional parameters passed in
the standard NAME="*VALUE” for-
mat. So while data can indeed be
passed to Custom Tags, this isn't an
automatic process. You must pass
attributes explicitly if they are to be
visible with the Custom Tag.

Notice that | used the word auto-
matic. Itisindeed possible to expose
calling page data to the Custom Tag
by using the CALLER scope. There is

<CFINCLUDE>
Is fast, it’s easy
to use and 1t's

Ideally suited for
use with simple
code and content

even a special scope (introduced in
ColdFusion 4.01) called REQUEST
that is automatically shared between
calling pages and Custom Tags. But
CALLER and REQUEST aren't the
default scopes, and using them is
your choice. In other words, Custom
Tags provide data protection unless
you explicitly choose to violate it.
(The exception is read-only data,
like CGI variables, URL parameters
or form fields, which are automati-
cally visible to code within Custom
Tags because there’s no risk in over-
writing them anyway.)

And there’s more. Custom Tags
can be paired (a start and an end
tag), and they can also be nested
(parent and child tags). This makes
it possible to write extremely pow-
erful (and complex) reusable com-
ponents.

All this extra power is a good
thing, but it’s also expensive. Cold-
Fusion has to do a lot more work to
execute Custom Tags while provid-
ing the protection of separate
scopes, and that translates into
slower execution time. Custom Tags
don't execute as quickly as <CFIN-
CLUDE>. That’s just the way it is,
and it’s a reality to consider when
using them. That doesn’t mean you
shouldn’t use Custom Tags. The
slight performance degradation is a
small price to pay for all that flexi-
bility and power, but at the same
time, if something can be included
with <CFINCLUDE>, calling it as a
Custom Tag is a waste of resources.

When should (and shouldn’t)
Custom Tags be used? Well, if all
you're doing is including a file of
JavaScript functions (like the exam-
ple above), or embedding a com-
mon header or footer, or including a
set of CSS styles, you should be
using <CFINCLUDE>. But if you're
writing reusable components, files
that contain lots of programmatic
and conditional code, components
that need to create and manipulate
data without the fear of overwriting
calling data, code that needs to
process runtime-specified attribut-
es, then you should definitely be
writing Custom Tags.

The code | referred to above —the
code that creates the page layout,
including styles and menus with
correctly highlighted sections —that
code is written as a Custom Tag.
Here’s a snippet showing how that
code is called:

<l--- Page settings --->
<CFSCRIPT>

page=StructNew();
page.title="Forta.com - About Me~’;
page.section="about”;

</CFSCRIPT>

<l--- Page template --->

<CFMODULE

TEMPLATE="__/common/SitePage.cfm"
PAGE_TITLE="#page.title#"
SECTION_ID="#page.sec-

tion#">

</CFMODULE>
First | use a<CFSCRIPT> block to
define the variables needed in this

page. | could have used <CFSET>

www.ColdFusionJournal.com

tags to do this, but when writing
long lists of variables (it is a long list;
this is just a small part of it),
<CFSCRIPT> is quite a bit cleaner.
Then the SitePage.cfm file (the actu-
al Custom Tag file containing all the
page layout code) is called using
<CFMODULE>. | could have called
this page as <CF_SitePage> too (the
more common form of Custom Tag
use), but <CFMODULE> is a little
quicker. And this is just the start of
it. Between those <CFMODULE>
tags are calls to additional Custom
Tags, tags that define navigation
bars, tags that create content body
boxes — and others too.

To summarize, Custom Tags are
powerful and flexible, and are ideal-
ly suited for use with more complex
reusable code and components,
especially components that are run-
time configurable via passed attri-
butes.

Application Scope Data

There’s one additional and relat-
ed topic to discuss — the reuse of
data (as opposed to code). | am a
firm believer in not hard-coding
anything in your code. Even data
sources, for example, should be
passed to <CFQUERY> as a previ-
ously defined variable rather than
as a string containing the actual
datasource name. This way, if a
data source needs to change (per-
haps when migrating the applica-
tion from development to staging
server), a single variable needs to
change, not every <CFQUERY>
tag.

The simplest way to do this is to

add code similar to the following
to your APPLICATION.CFM:

<CFSET dsn="forta">

Then you could refer to DATA-
SOURCE="#dsn#” in every
<CFQUERY>, and just change that
single variable to change all
<CFQUERY> tags.

But that’s not efficient. As the
number of variables being defined
grows, reinitializing them on every
request wastes resources. Plus, you
really don't want lots of arbitrarily
named global variables in your
application. That’s just asking for
trouble. Sooner or later you're going
to run into naming conflicts or vari-
able overwrites.

Listing 1 is a snippet out of my
new APPLICATION.CFM.

This code defines a global struc-
ture named APPLICATION.settings
within my application’s APPLICA-
TION scope. By surrounding the
code within the statement <CFIF
NOT IsDefined(*APPLICATION.set-
tings™)>, | can ensure that these
variables are initialized only once.
Of course, because these variables
are shared across the entire applica-
tion, a <CFLOCK> must be used to
prevent concurrency issues, but
that lock will be processed only
once, the first time any page in the
application is requested.

Again, | use a <CFSCRIPT> block
for simplicity’s sake and define a
single structure for all my global
variables. This reduces the risk of
creating naming conflicts or mis-
takenly overwriting variables. The

code here defines my data source as
APPLICATION.settings.dsn, then
creates an array of structures (with-
in the global structure) for menu
options —and does a whole lot more
not shown in the listing. Now my
<CFQUERY> tags can simply use
the following for the data source:

DATASOURCE="APPLICATION.settings.dsn"

This global application structure
isn't used just for data sources and
menus. For example, | load color
and stylesheet information as well
as lists of states and provinces into
it. Anything that doesn’t change (or
changes infrequently enough that
the structure can be updated as
needed) can, and should, go here. (I
know of some very high visibility e-
commerce sites that load entire
product catalogs into structures like
these, thereby eliminating lots of
database access.)

Summary

Writing applications with code
(and data) reuse takes a little extra
planning upfront. But the effort is
worth it. You’ll end up with better
quality, and less buggy and far more
manageable code as well as far
more scalable code - code you’ll be
much happier with and proud of.

So it turns out that recycling
really is good for the environment.
The development environment,
that is. {%,

ABOUT THE
AUTHOR

Ben Forta is Allaire
Corporation's product
evangelist for the
ColdFusion product line.
He is the author of the
best-selling ColdFusion
4.0 Web Application
Construction Kit and its
sequel, Advanced
ColdFusion 4.0
Development (both
published by Que), and he
recently released Sams
Teach Yourself SQL in 10
Minutes.

<l--- Load settings if needed --->

TYPE="EXCLUSIVE"

SCOPE="application">
<l--- Global app variables --->
<CFSCRIPT>

APPLICATION.settings=StructNew();
// Data source
APPLICATION.settings.dsn="forta";
// Number of items in menubar

// Build menu bar array

LISTING 1

<CFIF NOT IsDefined(""APPLICATION.settings')>
<l--- Lock global app structure --->
<CFLOCK TIMEOUT="#CreateTimeSpan(0,0,1,0)#"

// Define application settings variable

APPLICATION.settings.menubar_items=5;

APPLICATION.settings.-menubar=ArrayNew(1);

</CFIF>

www. ColdFusionJournal.com

ArrayResize(APPLICATION.settings.menubar, APPLICATION.set-

tings.menubar_items);
APPLICATION.settings.menubar[1]=StructNew();
APPLICATION.settings.menubar[1].href="../";

APPLICATION.settings.menubar[1].on="../images/btn_on_home.gif";

APPLICATION.settings.menubar[1].off="../images/btn_off_home.gif";
APPLICATION.settings.menubar[1].width=37;
APPLICATION.settings.menubar[1].height=15;
APPLICATION.settings.menubar[1].alt="Home";

</CFSCRIPT>
</CFLOCK>

FEBRUARY CFDJ 21

BY
DAVID
SCHWARTZ

Many readers and clients loved
the new capability and ease it offered.
And they wanted more, of course.

Feeling Trapped?

Most data-driven Web sites are
located on remote servers. If you
use a server-based database like
Microsoft SQL Server, it’s difficult to
retrieve table data locally. Down-
loading entire tables for use with
your desktop software or to keep a
local backup seems impossible. In
addition, your end users may peri-
odically need to download data
from the data-driven sites you cre-
ate.

Freedom At Last!
We’re going to add generic table
export capability to Array_Table.

Tahle Selection

jew | Table x| Edit? Mo :JStrun:ture.?an vl
Hame Created Owner Rows Export
1 authars 02/16/1997 dbo 23 Export
20 giscounts 02161007 dbo 3 Export
30 amployes DSASM087 dbo 43 Expor
410 jobs 02/16/1007 dhba 14 Export
8 pub info DEASMOIT dbo 0 Expord
8 pub infs 08481007 dbo 5 Export
7 publishers DEASMOIT dbo 8 Export
8 joysched 0BASMOOT dbo 86 Export
il e DEASHEET dbo 19 Export
A0 | 2ales 0811511987 dhbo 21 Export
1147 apires DEASHEET dbo & Export
12 C titleauthor 08M5MO09T dbe 25 Evport
130 Aitles OEHSMEET dbo 15 Expot
Do it |

TTBY Table_List cfm

Y% CFDJ FEBRUARY

Generic SQL Table Export

Add this export to your next application

It'll allow you to generate a com-
mon, popular and generic text file
that can be used in almost any
desktop application or database.
Array_Export will create a text file
and optionally e-mail it to you. With
this functionality you’ll have the
freedom to actually get to your data.
You can see Array_Table and
Array_Export in action at www.
arrayone.com/Table/.

Do _it!

To present your users with a
list of available tables, | created
Table_List.cfm (see Figure 1). This
form shows you a list of all the
tables in a data source with the
option to view the data or query the
table. I've added a choice, “Export”,
to the table list. This is the only nec-
essary addition to Table_List.cfm
(see Listing 1) and it's simply a hot
link to the table export program.
Here’s the code....

<a
href="Export/Export_Menu.cfm?Table-
Name=#Table_List.Name#">Export

All of the export files are being
stored and called from a subfolder,
“Export”. This keeps your files neat
and provides one point of reference
if you have to modify any export-
related code.

When you click on “Export”, the
Export_menu.cfm script is called
and you’re presented with the
export menu (see Figure 2 and List-
ing 2). The table you selected is
automatically passed to the export
menu. Now you have the option of
exporting the data to a comma- or
tab-delimited file, with or without
field names in the file header.

browser-based table viewer and query engine. Array_Table allows you to
browse, edit and query any Microsoft SQL Server table. It's 100% dynamic
so it works with any database.

| n my last article (CFDJ, Vol. 1, issue 6) | presented Array_Table, a universal

If you enter your e-mail address,
Array_Export will e-mail the export-
ed data file to you.

How’d He Do That?

It’s easier than you think. Array
Export.cfm calls Export.Cfm (see
Listing 3). Export.Cfm passes the
tablename along with your export
selections from the menu to the
main ColdFusion script, Table_
Export.cfm (see Listing 4). This
script handles all the export func-
tionality. Let’s examine Export.Cfm.

<l--- Export.CFM - Passes logon and
user choice parameters to the export
engine, Table_Export.CFM. --->
<l--- Set export file name --->
<cfset Dir_Name = #getdirectory
frompath(gettemplatepath())#>
<cfset FileName =
"#Dir_Name#\Data\#TableName##DateFor-
mat("#Now(Q#", "mmddyyyy')#._ txt">

<l--- Call export engine --->
<cf_Table_Export
DSN=""Demo"
Username="Guest"
Password="Guest"
Table="#TableName#"
FileName="#FileName#"
Delimiter="#Form.Delimiter#"
ColumnHeader="#Form.ColumnHeader#"
Emai 1="#Form.Emai 1#"">

Export.cfm sets the directory
where the exported data file will be
stored. Then it sets the name of the
exported file to be the file name plus
the current date. So if you were
exporting a table called “Sales” on
December 6, 1999, the exported file
name would be “Sales12061999.txt”.
Export.cfm then calls Table_Export.
cfm and passes all the necessary

www.ColdFusionJournal.com

Allaire

www.allaire.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

23

ABOUT THE
AUTHOR

David Schwartz is the
president of Array
Software Inc., a New
Jersey-based software
company. Array creates
global data-driven
Internet and intranet Web
sites using ColdFusion,
Oracle, MS SQL Server
and Java. David has
been developing turnkey
custom database
software for 13 years.

parameters, such as tablename and
filename.

Table_Export.Cfm
There are four steps in exporting

the table:

1. Query the table to retrieve all of
the rows.

2. Retrieve all of the column names.

3. Write the data out to a text file in
delimited text.

4. Mail the exported file to the user.

Step 1. Query the table.
<cfquery name="Export"
datasource="Demo" username="Guest"
password="Guest'>
Select * from #Attributes.Table#
</cfquery>
<cfif Export.RecordCount EQ 0>
There are no records to export
<cfabort>
</cfif>

Simply query the table for all
records. If there are none, display a
message to the user and abort. If
there are, we go to the second step.

Step 2. Get a list of all fields.
<cfquery name="Field_List" data-
source="Demo" username="Guest" pass-
word="Guest">
SELECT syscolumns.Name
FROM sysobjects , syscolumns
WHERE syscolumns.id = sysobjects.ID
AND upper(sysobjects.Name) =
"#Attributes.Table#"
</cfquery>
<I--- Put field list into an array --
->
<cfset x = ">
<cfloop query="Field_List">
<cfset x = x & Field_List.Name>
<cfif Field_List.CurrentRow NEQ
Field_List_RecordCount>
<cfset x = x & Attributes.Delim-
iter>
</cfif>
</cfloop>

Here we query the SQL Server
system tables (see December 1999
article) to retrieve the list of field-
names in the table. We need the field
list so we can export the data and
separate it by fields. The variable x
will hold the list of fields, each field-
name separated by a comma.

<Cffile> is the perfect tag for cre-
ating and editing text files. Using
the action="write” option, ColdFu-

CFDJ FEBRUARY

sion will create the text file if it
doesn't already exist.

<I--- Create export file --->
<cffile action="WRITE" file="#Attri-
butes.FileName#" output=""" addnew-
line="No">

Once the file is created, you can
write the field list header to it (if the
user chose to add fieldnames to the
file).

<cffile action="APPEND”
file=“#Attributes.FileName#” out-
put="#x##Chr (13)##Chr (10)#” addnew-
line=“No”>

Here, the variable x, which now
holds the list of fields, is used.

Now you have a
scalable, dynamic

tool to view, query
and export data
from any table

Step 3. Write the data out to a text file
in delimited text.

To make it easier to loop through
the list of fields, | prefer to use
arrays. The following command
converts the fieldlist to an array
called FL.

<cfset FL = ListToArray(x, #Attributes.
Delimiter#)>

A simple nested (double) loop
can now be used to loop through all
the records in the table and output
all the data. During the loop a single
line of data is created in the variable
D. It contains all data from all fields
as well as the field delimiter charac-
ter. After the data line is built, it can
be written to the text file using
<cffile> with the action="append”.
Append adds new lines to the file
without erasing any existing data.

<l--- Loop through the export query
which contains all data rows --->

Array Export v1.0

Exporting authors

HMddMMEdeomma 'i
ﬁddﬁddnama%Nu 'I

Emaﬂﬂmtu;ds@arrayane.com

Expart it! I
T =xport menu

<cfloop query="Export'>

<cfset d = ">
<I--- Now loop through the field
list and build the row export data --
->

from="1"
to="#ArrayLen(FL)#">
<cfset S = SetvVariable("S",

"#FL[N]#")>
<cfset d = d &
Trim(#Evaluate(S)#)>

<cfif n NEQ ArrayLen(FL)>
<cfset d = d & Attributes.Delim-
iter>
</cfif>
</cfloop>
<l--- Write record to text file ---

<cffile action="APPEND"
file="#Attributes.FileName#"
input="#d##Chr (13)##Chr(10)#"
addnewline="no">
</cfloop>

Step 4. Mail the exported file to the
user.

After the export loop completes
the file, a new export file will be sit-
ting on the server. If the user
entered an e-mail address on the
Export_menu.cfm form, the file will
automatically be e-mailed to them.
It doesn’t get any easier than this.

Extension Cord, Please

Now you have a scalable, dynam-
ic tool to view, query and export
data from any table. With the new
data export capability it's easy to
bring data back to your desktop for
backup or manipulation. Since the
export generates pure text files, the
data can be used in virtually any
application. The possibilities are
still endless. {%,

www.ColdFusionJournal.com

Allaire

www.allaire.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

25

LISTING 1 <TD BGCOLOR="si lver'> </TD>

<TD BGCOLOR="silver"> </TD>

<I--- Table_List.Cfm - Sample interface to the Array_Table <TD BGCOLOR="si Iver"> -</TD>
tag. It allows you to choose a table and then view or query <D BGCOLOR—"siIver">&nbsg:</TD>
it. —-—> :" - . ;
<TITLE>Array Table Viewer</TITLE> <;$B>BGCOLOR‘ SOUver il i</ 0=
<BODY background="back.gif"> s

<cfform action="Call_Array Table.cfm" method="POST" enable-
cab="Yes" enctype="application/x-www-form-urlencoded">
<cfquery name="Table_List" datasource="Demo" dbtype="0DBC"
username="Gcuest" password="Guest'>
SELECT distinct O.Name, 0.UID, O.CRdate, U.name as Owner,
I.rows
FROM sysobjects O inner join sysusers U

on (O0.uid = U.uid)

inner join sysindexes I

on (l.id = 0.id)

Where O.type = "u"

ORDER BY 0.Name
</cfquery>

<cfif Table_List.RecordCount EQ 0>

There are no tables to display

<TD HEIGHT="32" COLSPAN="8" BGCOLOR="silver">View
<SELECT NAME="Action">
<OPTION SELECTED>Table</OPTION>
<OPTION>Query</0PTION>
<l--- <OPTION>Export</OPTION> --->
</SELECT>
Edit?
<SELECT NAME="Edit">
<option value="No" selected>No</option>
<option value="Yes'">Yes</option>
</SELECT>
Structure?
<SELECT NAME="Structure'>
<option value="No" selected>No</option>

<;EI?$grt> <option value="Yes">Yes</option>
_nan - _nan ST </SELECT>
<table border="0" cellspacing="0" cellpadding="0 </TD>
align="CENTER" bgcolor="Silver">
<TR>
<TD BGCOLOR=""#0033CC"> </TD> :QE)

<TD COLSPAN="7" BGCOLOR="#0033CC""><FONT SIZE="2"
COLOR="white" FACE="Arial, Helvetica'>Table
Selection</TD>
</TR>
<TR>
<TD BGCOLOR="'silver'> </TD>
<TD BGCOLOR="si lver*> </TD>
<TD BGCOLOR="silver"> </TD>

<TD BGCOLOR="silver'> </TD>

<TD BGCOLOR="silver'> </TD>

<TD BGCOLOR="'silver'><FONT SIZE="2" FACE="Arial, Hel-
vetica''>Name</TD>

<TD BGCOLOR="silver"><FONT SIZE="2" FACE="Arial, Hel-
vetica'>Created</TD>

<TD BGCOLOR="'silver"><FONT SIZE="2" FACE="Arial, Hel-
vetica'>0wner</TD>

Fusion.

We've got it down cold.

ColdFusion Hosting

S5L Secure Server

Co-location Services

In-house ColdFusion Developers

Microsoft FrontPage, ASP, and NetShow

RealAudio, RealVideo, and RealFlash Server

Adhost Merchant, a scalable, customizable storefront
Redundant DS-3 connections, bandwidth scalable to OC-3

www.adhost.com www.adhostmerchant.com sales{@adhost.com 888-234-6781

26 CFDJ FEBRUARY www. ColdFusionJournal.com

<TD BGCOLOR="'silver"><FONT SIZE=""2" FACE="Arial, Hel-
vetica''>Rows </TD>
<TD BGCOLOR="'silver"><FONT SIZE="'2" FACE="Arial, Hel-
vetica'>Export</TD>
<td> </td>
</TR>
<cfoutput query="Table_List">
<TR>
<TD BGCOLOR="silver'> </TD>
<td align="RIGHT" bgcolor="Silver"><FONT SIZE="-2"
FACE="Arial, Helvetica">#Table_List.CurrentRow#</TD>
<TD BGCOLOR="'silver"><FONT SIZE="-2" FACE="Arial, Helveti-
ca'">
<cfif Table_List.CurrentRow eq 1>
<cfinput
type="Radio" name="TableName" value="#Table_List.Name#"
checked=""Yes">
<cfelse>
<cfinput
type="Radio" name="TableName" value="#Table_List.Name#">
</cfif>
#Table_List.Name#</TD>
<TD BGCOLOR="silver"><FONT SIZE="-2" FACE="Arial, Hel-
vetica">#DateFormat("'#Table_List.CRDate#","mm/dd/yyyy')#</TD>
<TD BGCOLOR="silver"><FONT SIZE="-2" FACE="Arial, Hel-
vetica''>#Table_List.Owner#</TD>
<td align="RIGHT" bgcolor="Silver"><FONT SIZE="-2"
FACE="Arial, Helvetica">#Table_List.Rows# </TD>
<td align="Left" bgcolor="Silver"><FONT SIZE="-2"
FACE="Arial, Helvetica'>Exp
ort</TD>
<td BGCOLOR="silver"> </td>
</TR>
</cfoutput>
<TR>

<td colspan="8" align="CENTER" bgcolor="Silver">
<input type="Submit" name="Submit" value="Do it!">
</TD>
</TR>
</TABLE>
</cTFORM>

<TITLE>Array Table Export</TITLE>
<cfFORM ACTION="Export.Cfm?Tablename=#Tablename#"
METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
<CENTER>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0"
bgcolor="silver">
<TR>
<TD COLSPAN="'3" BGCOLOR="#0033CC'"><FONT COLOR="white"
FACE="Arial, Helvetica">Array Export v1.0</TD>
</TR>
<tr>
<TD colspan="3" align="CENTER"> </TD>
</tr>
<tr>
<TD colspan="3" align="CENTER"><FONT SIZE="2"
FACE="arial"><cfoutput>Exporting #TableName#</cfoutput></TD>
</tr>
<tr>
<TD colspan="3" align="CENTER"> </TD>
</tr>
<TR>
<td align="RIGHT">Field delim-
iter</TD>
<TD>
<SELECT NAME="Delimiter">
<OPTION value="Comma" SELECTED>Comma</OPTION>
<OPTION value="Tab">Tab</OPTION>
</SELECT>

RSW Software

www.rswsoftware.com

www. ColdFusionJournal.com

FEBRUARY CFDJ 27

</TD>
<TD> </TD>
</TR>
<TR>
<TD>Add field names</TD>
<TD>
<SELECT NAME="ColumnHeader">
<OPTION value="Yes">Yes</OPTION>
<OPTION value="No" SELECTED>No</OPTION>
</SELECT>
</TD>
<TD> </TD>
</TR>
<TR>
<TD align="right"><FONT SIZE="2" FACE="Arial,
Helvetica™>email file to</TD>
<TD><cfinput type="Text" name="email" value=""
required="No" size="15" maxlength="40"></TD>
<TD> </TD>
</TR>
<tr><TD colspan="3" align="CENTER"> </TD></tr>
<TR>
<TD COLSPAN="3" align="Center"><INPUT TYPE="SUBMIT"
NAME="'Submit" VALUE="Export it!"></TD>
</TR>
<tr><TD colspan="3" align="CENTER"> </TD></tr>
</TABLE>

</CENTER>
</cfFORM>
LISTING 3
<I-—- Export.CFM - Passes logon parameters to the export

engine, Table Export.CFM. --->

<I--- Set export file name --->

<cfset Dir_Name = #getdirectoryfrompath(gettemplatepath())#>
<cfset FileName = "#Dir_Name#\Data\#TableName##DateFor-
mat("#Now(Q#", "mmddyyyy')#. txt'">

<l--- Call export engine --->
<cf_Table_Export
DSN=""Demo"*
Username="Guest"
Password="Guest"
Table="#TableName#"
FileName="#FileName#"
Delimiter="#Form.Delimiter#"
ColumnHeader="#Form.ColumnHeader#"
Emai l="#Form_Emai I#"">

LISTING 4

<l--- Table_Export.Cfm - Export Engine --->
<cfparam name="Attributes.DSN">

<cfparam name="Attributes.UserName'>
<cfparam name="Attributes.Password">
<cfparam name="Attributes.Table">

<cfparam name="Attributes.FileName">
<cfparam name="Attributes._Delimiter">
<cfparam name="Attributes.ColumnHeader'>
<cfparam name="Attributes.eMail">

Export
Status

<cfswitch expression="#Attributes.Delimiter#">
<cfcase value="Comma'">

<cfset Attributes.Delimiter = ",">
</cfcase>
<cfcase value="Tab">

<cfquery name="Export" datasource="Demo" username="Guest
password="Guest">

Select * from #Attributes.Table#

</cfquery>

<cfif Export.RecordCount EQ 0>

There are no records to export

<cfabort>

</cfif>

<I--- Get field list --->
<cfquery name="Field_List" datasource="Demo"
username="Guest" password="Guest">

SELECT syscolumns.Name

FROM sysobjects , syscolumns

WHERE syscolumns.id = sysobjects.ID

AND upper(sysobjects.Name) = “#Attributes.Table#"

</cfquery>
<l--- Put field list into an array --->
<cfset x = "">

<cfloop query="Field_List">
<cfset x = x & Field_List.Name>
<cfif Field_List.CurrentRow NEQ Field_List.RecordCount>
<cfset x = x & Attributes.Delimiter>
</cfif>
</cfloop>

<l--- Create export file --->
<cffile action="WRITE" file="#Attributes.FileName#" out-
put=""" addnewline="No">

<l--- Check If user wants field names in file header --->
<cfif ucase(Attributes.ColumnHeader) EQ "YES">
<l--- Write out field names to the text file header--->

<cffile action="APPEND" file="#Attributes._FileName#" out-
put="#x##Chr (13)##Chr (10)#" addnewline="No">
</cfif>

<l--- Export the records --->
<!--- Build records --->
<cfset FL = ListToArray(x, #Attributes.Delimiter#)>
<cfloop query="Export'>
<cfset d = ">
<cfloop index="n" from="1" to="#ArrayLen(FL)#">
<cfset S = SetVariable("S", "#FL[n]#")>
<cfset d = d & Trim(#Evaluate(S)#)>
<cfif n NEQ ArrayLen(FL)>
<cfset d = d & Attributes.Delimiter>
</cfif>
</cfloop>
<I--- Write record to text file --—>
<cffile action="APPEND" file="#Attributes.FileName#" out-
put="#d##Chr (13)##Chr(10)#" addnewline="no">
</cfloop>

<I--- Check if user wants export file emailed --->
<cfif Attributes.Email NEQ ">
<cfmail to="#Form.Email#" from="Array_Table_ Export" sub-
jJect="File Export" mimeattach="#Attributes.FileName#" serv-
er="arrayone.com" port=25 timeout=600>
File export completed. Rows = #Export.RecordCount#
Here is a copy of the export file
</cfmail>
<cfoutput>The export file, #Attributes.FileName# was
emailed to #Attributes.Email#.</cfoutput>

</cfif>

File export done.

The new export file name is <cfoutput>
#Attributes.FileName#</cfoutput>.

<cfset Attributes.Delimiter = Chr(09)>
</cfcase>
</cfswitch>
<l--- Query table & check for records to export --->

The code listing for

this article can also be located at
www.ColdFusionJdournal.com

28 CFDJ FEBRUARY

www.ColdFusionJournal.com

Allaire

www.allaire.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

29

CFDJ SPECIAL FEATURE

A Beginner’s Guide to ColdFusion

A primer in dynamic page

development

Using Templates

All ColdFusion interaction is via
templates rather than HTML files.
Templates can contain HTML, Cold-
Fusion tags and functions, or both.

ColdFusion templates are plain text
files, just like HTML files are. Unlike
HTML files, which are sent to the user’s
browser, templates are first processed
by ColdFusion. This allows you to
embed instructions to ColdFusion
within your templates. If, for example,
you wanted to process user-passed
parameters, retrieve data from a data-
base, or conditionally display certain
information, you could instruct Cold-
Fusion to do so.

Instead of just reading about tem-
plates, why don't we create one?

The first template you create will
just say hello to you. You can do that
with any HTML file, but along with
saying hello, this template also identi-

This article has been adapted from Chapter 11 of ColdFusion 4 Web
Application Construction Kit by Ben Forta. Published by permission of
Macmillan Publishers Ltd. and the author. Part 2 of Chapter 11 will
appear in the March issue of ColdFusion Developer’s Journal, to be
followed by adaptations of Chapters 12 and 13. The book can be pur-
chased through Amazon.com or by clicking on www.forta.com/books.

30 CFDJ FEBRUARY

FROM THE BOOK
BY BEN FORTA

fies your IP address and the browser
you are using. You can't do that with
plain HTML.

Create a text file containing the
code in Listing 1 and save it in your
C:\A2Z\SCRIPTS\11 directory as
HELLO1.CFM. (Note: The instructions
here [and throughout this series of
articles] assume that source files are
saved in a directory structure named
C:\A2Z\SCRIPTS, with a subdirectory
for each month that an article appears
in ColdFusion Developer’s Journal. If
you have not already done so, create a
directory to store the files that you cre-
ate as you work through these articles.
You also need to create a Web server
mapping [or alias] to map the virtual
path a2z to the physical directory
C:\A2Z\SCRIPTS. Refer to your Web
server documentation for instructions
on how to do this. If you are using
Microsoft IS or Personal Web Server,
you must also ensure that the a2z alias
has execute privileges.)

Once you have created and saved
the file, load your browser and enter
http://yourserver.com/a2z/11/hellol
.cfm in the URL field (replacing your-
server.com with your own server
name or IP address).

Tem mu g e wrim § oy g
o . ey e sk S b ana |
e e
UL S
M A A T SR e

B B s e ey srmsied B
e e e L
[T

A et B Bl e

A Aty b e
ol il Tay el
Ll F o s mrmaioy

zallaire

SOLDFUSION 8

Toae o Libmmiss

Duaryraisg yodd @esd 1o creals
peeaartal Wak bspad spplirerssas

TIP

If you are running ColdFusion on
the same machine that you are
developing on, you can use the
address localhost to refer to your
own computer. localhost is a spe-
cial host name (which maps to
the IP address 127.0.0.1) that
always points to itself. In an envi-
ronment where you are using
dynamic IP address (dialing up to
your ISP or using DHCP on a
company network, for example)
this is the only host name that
always works, regardless of the IP
address actually assigned.

Your browser will display a page
that should look similar to the one
shown in Figure 1; of course, your IP
address and browser information
could be different.

Understanding ColdFusion Templates
Now take a look at the code in List-
ing 1. Most of the code should be
familiar to you as standard HTML.
The tags for head, title, line breaks

www.ColdFusionJournal.com

and bold text are the HTML that you'd
use in any other Web page.

What is not standard HTML? The
<CFOUTOUT> tag and fields sur-
rounded by pound signs (#).

All ColdFusion-specific tags begin
with CEF, and <CFOUTPUT> is a Cold-
Fusion-specific tag. <CFOUTPUT> (or
ColdFusion output) is used to mark a
block of code that ColdFusion should
itself process prior to submitting it to
the Web server for sending to your
browser. When ColdFusion encoun-
ters a <CFOUTPUT> tag, it scans all
the text until the next </CFOUTPUT>
for ColdFusion functions or fields
delimited by pound signs.

There are two fields used in Listing
1: #REMOTE_ADDR# and #HTTP_
USER_AGENT#. They are CGI vari-
ables that HTTP servers make avail-
able to CGI applications like ColdFu-
sion. #REMOTE_ADDR# contains
your browser’s IP address, and
#HTTP_USER_AGENT# contains the
string that your browser identified
itself with. When ColdFusion encoun-
tered the text #REMOTE_ADDR# in
the CFOUTPUT block, it replaced it
with the value in the REMOTE_ADDR
CGl variable. When it encountered
#HTTP_USER_AGENT# on the next
line, it replaced that with the appro-
priate CGl variable. Instead of send-
ing the text you entered back to
your browser, ColdFusion replaced
the field names with the field val-
ues, and sent that back to you
instead.

Why did we need the <CFOUT-
PUT> block? Take a look at what Cold-
Fusion would have done without it.
Listing 2 contains a modified version
of the code used earlier, this time
twice — once within a CFOUPUT block
and once without.

If you use fields outside of a
CFOUTPUT block, ColdFusion dis-
plays the field name as you entered it,
complete with the delimiting charac-
ters. You can see this in Figure 2. More
often than not, this is not the result
you'll want.

Every <CFOUTPUT> tag must
have a corresponding </CFOUT-
PUT> tag, and vice versa. ColdFu-
sion returns a syntax error if you
omit either tag.

www. ColdFusionJournal.com

In the first example you used Cold-
Fusion to display dynamic data by
specifying the field names for two CGI
variables. ColdFusion can be used to
display process parameters passed to
a URL in exactly the same way.

To pass a parameter to a template,
the parameter name and value are
specified within the URL. For exam-
ple, to pass a parameter NAME with a
value of BEN, add ?NAME=BEN to the
URL. If you specify multiple URL
parameters, each one must be sepa-
rated by an ampersand character (&).

Try this yourself. Listing 3 contains
a template that displays - if it exists —
the value of a parameter called NAME.
To do so, it uses the <CFIF> tag to cre-
ate a condition, and a ColdFusion
function called IsDefined(). If the
parameter NAME exists, its value is
displayed; otherwise, the user is noti-
fied that the parameter was not
passed.

Once you have created and saved
the file as HELLO3.CFM in the
C:\A2Z\SCRIPTS\11 directory, load
your browser and type http://your-
server.com/a2z/11/hello3.cfm?NAME
=BEN. (You don’t have to use my
name, any name will do.) Your brows-
er display should look like the one
shown in Figure 3. Now try it again
without any NAME parameter. This
time you should see a display like the
one shown in Figure 4.

Why did we bother testing for
IsDefined(“name”)? Try removing the
<CFIF> statement (you have to
remove the <CFELSE> and </CFIF>
lines too) and then enter http://
yourserver.com/a2z/11/hello3.cfm
without any NAME parameter. You'll
see an error screen similar to the one
shown in Figure 5. ColdFusion returns
an error message because it has no
idea what #name# is. You instructed
ColdFusion to process a field that did
not exist, and so it rightfully com-
plained.

Now that you've seen what ColdFu-
sion templates look like, and know
how to create, save, and test them,
return to A2Z Books.

Your employee database is set up
and populated with data, and so your
next task is to publish this informa-
tion on your intranet. This way your
users can use an up-to-date employ-
ee list at all times and won't need any
special software to do so. All they
need to access the data is a Web
browser.

SPECIAL BOOK EXCERPT

ColdFusion templates allow you to display dynamic
data in your Web pages.

Ik s is: #REMOTE_ADDR#
Your browser 1s- #HTTP USER. AGENTE

3 lines are within a CFOUTFPUT block.

i e
1Re next

Hello,

ess 19 206.00,56.71
ser 15° Mozilla/4.01 [en] (Win95; 1)

S ol O

Melds not contained within a CFOUTPUT bloék will be
output as is, and not replaced with their values.

alsan| Sy ook wiead | 4 badson | ¥, CodFumn 5L

MoldFusion converts parameters passed to A URL into
fields that you can use within your template.

Hello,
You did not pass a parameter called NAME

sk il] i aamoiin. | KL Coldrun 5L || kel - Wat T nmr

¥ Whenever fields are optional, you should veHify that
they exist before using them.

Static Web Pages

Before we create the ColdFusion
template, first take a look at how not
to create this page.

Listing 4 contains the HTML code
for the employee list Web page. The
HTML code is relatively simple; it
contains header information and
then a list of employees in an HTML
unordered list ().

FEBRUARY CFDJ 31

SPECIAL BOOK EXCERPT

MoldFusion displays an error message if you‘ refer to
a variable or field that does not exist.

7 Emplopeo Lisi - Nolssase

2 & 3 & 3

47 e SRY.
BEETETT)

e T = e [T | r——p

Mu can create the employee Web page as a‘static
HTML file.

. E] a b b of

Employees

Meally, the employee Web page should be génerated
dynamically, based on live data.

Figure 6 shows the output that this
code listing generates.

Dynamic Web Pages

Why is a static HTML file not the
way to create the Web page? What
would you do when a new employee is
hired, or when an employee leaves the
company? What would you do if
phone extensions changed?

You could directly modify the HTML
code to reflect these changes, but you
already have all this information in a
database. Why would you want to have
to enter it all again? You'd run the risk of
making mistakes — names being mis-

32 CFDJ FEBRUARY

spelled, entries out of order, and possi-
bly missing names altogether. As the
number of names in the list grows, so
will the potential for errors to occur. In
addition, employees will be looking at
inaccurate information during the
period between updating the table and
updating the Web page.

A much easier and more reliable
solution is to have the Web page dis-
play the contents of your Employee
table; this way any table changes are
immediately available to all employ-
ees. The Web page would be dynami-
cally built based on the contents of
the Employee table.

To create your first ColdFusion tem-
plate, enter the code as it appears in
Listing 5 and save it in the C:\A2Z\
SCRIPTS\11 as EMPLOY1.CFM. (Don't
worry if the ColdFusion code does not
make much sense yet; | explain it in
detail in just a moment.)

Now load your browser and type
http://yourserver.com/11/a2z/em-
ployl.cfm in the URL field (replacing
yourserver.com with your own server
name). The results are shown in Figure 7.

Now compare Figure 6 to Figure 7.
Can you see the difference between
them? Look carefully.

Give up? The truth is that there is
no difference at all. The screen shots
are identical, and if you looked at the
HTML source that generated Figure 7,
you'd see that aside from lots of extra
white space, the dynamically generat-
ed code is exactly the same as the sta-
tic code you entered in Listing 4, and
nothing like the dynamic code you
entered in Listing 5.

How did the code in Listing 5
become the HTML source code that
generated Figure 7? Review the code
listing carefully.

The CFQUERY Tag

The first lines in Listing 5 include a
ColdFusion tag called <CFQUERY>,
which submits any SQL statement to
an ODBC data source. The SQL state-
ment is usually a SQL SELECT state-
ment, but could also be an INSERT,
UPDATE, DELETE, a stored procedure
call, or any other SQL statement.

Note: To follow these examples you
must first create the A2Z data source. The
simplest way to do this is by using the
ColdFusion Administrator, as follows:
1. First, load the ColdFusion Adminis-

trator.

N

. Click on the ODBC menu option.

3. To create a new data source, enter
“A2Z” in the Data Source Name
field, select Microsoft Access Driver
as the ODBC Diriver, then click the
Add button.

4. Type the full path to the down-
loaded A2Z.MDB file in the Data-
base File field, or click the Browser
Server button to browse for it.

5. Click the Create button to create
the data source. Assuming every-
thing has worked, you’ll see a suc-
cess notification screen. If an error
screen is displayed, make sure the
specified path is correct and try
again.

The <CFQUERY> tag has several
attributes, or parameters, that are
passed to it when used. The <CF-
QUERY> in Listing 5 uses only two
attributes:

e The NAME attribute is used to
name the query and any returned
data.

e The DATASOURCE attribute con-
tains the name of the ODBC data
source to be used.

The query NAME we specified is
Employees. This name will be used
later when we process the results gen-
erated by the query. (Note: Query
names passed to <CFQUERY> need
not be unique to each query within
your page. If you do reuse query
names, subsequent <CFQUERY> calls
will overwrite the results retrieved by
the earlier query.)

We specified A2Z for the DATA-
SOURCE attribute [name of the data
source created in Chapter 9 of this book].
SELECT FirstName, LastName, PhoneEx-
tension FROM Employees ORDER BY
LastName, FirstName was the SQL state-
ment used. This statement selects the
columns we need from the Employee
table and sorts them by last name plus
first name.

The SQL statement in Listing 5
is broken up over many lines to
make the code more readable.
While it is perfectly legal to write
a long SQL statement that is
wider than the width of

your browser, these generally
should be broken up over

as many lines as needed.

www.ColdFusionJournal.com

House Ad

WWW.SYs-con.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

33

SPECIAL BOOK EXCERPT

34

When ColdFusion processes the
template, the first item it finds is the
ColdFusion tag <CFQUERY>. ColdFu-
sion knows which tags it itself must
process, and which it must pass to the
server directly. <CFQUERY> is a Cold-
Fusion tag, and therefore must be
processed by ColdFusion.

When ColdFusion encounters a
<CFQUERY> tag, it creates an ODBC
request and submits it to the specified
data source. The results, if there are
any, are stored in a temporary buffer
and are identified by the name speci-
fied in the NAME attribute. All this
happens before ColdFusion processes
the next line in the template.

The <CFQUERY> code, and indeed
all ColdFusion markup code, never
gets sent on to the server for transmis-
sion to the browser. Unlike HTML tags,
which are browser instructions, CFML
tags are ColdFusion instructions.

It is important to note that at this
point no data has been displayed.
<CFQUERY> retrieves data from a
database table, but it does not display
that data. Actually, it does nothing at
all with the data - that’s your job.

The next lines in the template are
standard HTML tags, headers, title
and headings. Because these are not
ColdFusion tags, they are sent to the
Web server and then on to the client
browser.

Displaying Query Results with the
CFOUTPUT Tag

Next we create an HTML unordered
list using the tag. The list is ter-
minated a few lines later with a
tag.

The list of employees itself goes
between the and tags.
Each name is a separate list item, and
therefore begins with an HTML
tag. Instead of listing the employees as
shown in Figure 6, we used a
<CFOUTPUT> tag.

<CFOUTPUT> is the same ColdFu-
sion output tag we used earlier. This
time, however, we are using it to create a
code block that is used to output the
results of a <CFQUERY>. In order for
ColdFusion to know which query results
to output, the query name is passed to
<CFOUTPUT> in the QUERY attribute.
The name provided is the same that was
assigned to the <CFQUERY> tag’s NAME
attribute. In this case, the NAME is
Employees.

The code between the <CFOUT-
PUT QUERY=“Employees”> and
</CFOUTPUT> is the output code

CFDJ FEBRUARY

block. ColdFusion uses this code once
for every row that was retrieved.
Because there are currently 12 rows in
the Employee table, the <CFOUPUT>
code is looped through 12 times. And
any HTML or CFML tags within that
block are repeated as well, once for
each row.

Using Table Columns

As explained earlier, ColdFusion
uses # to delimit fields. In addition to
CGI variables and URL parameters,
which we used at the beginning of this
article, ColdFusion fields can also be
columns retrieved by a <CFQUERY>.
Whatever field is used, ColdFusion
replaces the field name with the actu-
al value. When ColdFusion processed
the output block, it replaced #Last-
Name# with the contents of the Last-
Name column that was retrieved in
the Employees query. Each time the
output code block is used, that row’s
LastName value is inserted into the
HTML code.

ColdFusion fields can be treated
like any other text in an HTML docu-
ment; any of the HTML formatting
tags can be applied to them. In our
example the query results need to be
displayed in an unordered list. Each
employee’s name and phone exten-
sionis alist item, and is therefore pre-
ceded by the tag. Because the
 tag is included within the
CFOUTPUT block, ColdFusion out-
puts it along with every row.

Look at the following line of code:

 #LastName#, #FirstName# - Ext.
#PhoneExtension#

That code becomes the following
for employee Kim Black at extension
4565:

 Black, Kim - Ext. 4565.

Only the tag is within the
CFOUPUT block — not the and
 - because you want only one
list, not many. If the and
were within the CFOUPUT block, you
would have a new list created for each
employee — definitely not the desired
result at all.

Figure 7 shows the browser display
that this template creates. It is exactly
the same result as Figure 6, but with-
out any new data entry whatsoever.

Welcome to ColdFusion, and the
wonderful world of dynamic data-dri-
ven Web pages!

The nature of the World Wide Web
places certain restrictions on data
interaction. Every time a Web browser
makes a request, a connection is
made to a Web server, and that con-
nection is maintained only for as long
as it takes to retrieve the Web page.
Subsequent selections and Web
requests create yet another connec-
tion; again, for the specific request.

Simple user interfaces that we take
for granted in most commercial soft-
ware, such as scrolling through previ-
ous or next records with the cursor
keys, become quite complex within
the constraints of Web pages and how
they interact with Web servers.

One very elegant and popular form
of Web-based data interaction is the
drill-down approach. Drill down is
designed to break up data and display
only what is needed on a single page.
Selecting an item in that page causes
details about that item to be dis-
played. The process is called drilling
down because you drill through the
data layer by layer to find the informa-
tion you need.

The employee page you just creat-
ed, for example, displays a simple list
of employees and extensions. What if
you want to display more information
such as title, department, and e-mail
address? You could select more
columns in <CFQUERY> and display
them in the <CFOUTPUT> code, but
that would clutter the screen and
make it hard to use.

A better approach is to display less
information on a page, and allow the
user to click an employee’s name in
order to display more information
about that employee. This approach —
gradually digging deeper into a data
set to find the information you want —
is known as drilling down.

Creating a drill-down application
in ColdFusion involves creating mul-
tiple templates. In our example, one
template lists the employees, and a
second template displays an employ-
ee’s details.

First create the detail template. The
SQL query in this template has to
select detailed user information for a
specific user. Obviously you don’t
want to create a template for every
employee in your database. Doing so
would totally defeat the purpose of
using templates in the first place.
Rather, the template needs to be

www.ColdFusionJournal.com

House Ad

WWW.SYs-con.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

35

SPECIAL BOOK EXCERPT

ok o - Melscase
Edl ¥aw [o [owercen Hig

| <« & 3 4% 2 & o & 4@
Back AN th Pl Gy

2 Reoed
T M e [

Black, Kim

Title: Sermor Account Rep
Extension: 4565

Cellular;

Fager:

E-Mail: kblack@ia2zhooks

com

| i T R

SN |f you want to create truly dynamic pages, ﬁarame-
ters can be passed to ColdFusion templates and used to create
dynamic SQL statements.

Emplupeo Livi - Nessage
Edh yam o [rwercen tes

B ale H
| s S e | N e T T

FSraat| AT

Mou can build hyperlink URLs dynamically t&) create
even more dynamic Web pages.

Black, Kim

Thir: 5¢
Falrivdma: 453
| edicie
Famet

E Ma

a4 i e
My passing parameters to a ColdFusion teﬁnplate,

you can use the same template to display different records and
bypass requiring a different HTML page for each.

passed a parameter, a value that
uniquely identifies an employee. For-
tunately, when we created the Employ-
ee table, we created a column called
Employeel D, which contains a unique
employee ID for each employee in the
table. The code in Listing 6 demon-
strates how this is done.

Before you look at the Web page
produced by this code, take a look at
the SQL statement in this <CFQUERY>
tag.

The SQL SELECT statement selects
the columns needed and uses a
WHERE clause to specify which row
to select. The WHERE clause cannot
be hard-coded for any particular

36 CFDJ FEBRUARY

employee ID and therefore uses a
passed field: #EmployeelD#. The
#EmployeelD# field is passed to the
template as part of the URL.

Therefore, if an EmployeelD of 7
were passed with the URL, the
WHERE clause (WHERE EmployeelD
= #EmployeelD#) would become
exactly what you need to select the
correct row:

WHERE EmployeelD = 7

As seen earlier, parameters are
passed to URLs after the template
name, and each parameter is separat-
ed by an ampersand character. To
specify employee ID 7, you'd add
?EmployeelD=7 to the URL.

Now try this out. Type the URL
http://yourserver.com/a2z/11/empdt
11.cfm?EmployeelD=7 in the URL field
(replacing yourserver.com with your
own server name) in your browser.
The resulting output is shown in Fig-
ure 8.

To display the details for another
employee, all you need to do is change
the value passed to the URL Employ-
eelD parameter. Try replacing Employ-
eelD=7 with EmployeelD=5, which
displays information on a different
employee. The same template can now
be used to display details for any
employee in the database because the
Web page is data driven.

To complete the drill-down appli-
cation, you need to modify the
employee list page to include links to
the employee details page.

The code for the updated template
is in Listing 7.

Listing 7 is the same as Listing 5,
with two exceptions. First, you now
need the EmployeelD value, and so
the SQL SELECT statement in the
<CFQUERY> has been changed to also
include this column. Second, the
employee’s name in the <CFOUT-
PUT> code block has been modified
so that it is a hyperlink to the employ-
ee detail page.

The new employee name code
reads as follows:

 <A
HREF="empdtl1.cfm?EmployeelD=#Employ-
eelD#">#LastName#, #FirstName#
[ic:ccc] - Ext. #PhoneExtension#

When ColdFusion processes employ-
ee 7, this line becomes the following:

 <A HREF="empdtll.cfm?Employ-
eelD=7">Black, Kim - Ext. 4565.

This way, the URL needed for the
hyperlink is also dynamic. The URL
built for each employee will contain
the correct employee ID, which can be
passed to the employee detail tem-
plate.

Now try this example. Type the URL
http://yourserver.com/a2z/11/employ
2.cfm (replacing yourserver.com with
your own server name). Figure 9
shows what the output looks like. The
only difference between this display
and the one in Figure 7 is that now the
employee names are hyperlinks. You
can click any one of these links to dis-
play employee details, as seen in Fig-
ure 10.

Using Frames to Implement Data
Drill-Down

One problem with the drill-down
templates just created is that every
time you view an employee’s details
you have to click your browser’s Back
button to return to the employee list
page. A more usable approach is to
display the employee list and details
at the same time.

Fortunately you can easily do this
via a browser feature called frames.
Frames allow you to split your brows-
er window in two or more windows
and control what gets displayed with-
in each.

ColdFusion templates are very well
suited for use within frames.

Creating frames involves creating
multiple templates (or HTML pages).
Each window in a frame typically dis-
plays a different template; you need
two templates if you have two win-
dows. In addition, there is always one
more page that is used to lay out and
create the frames.

When the frames are created, each
window is titled with a unique name.
In a nonframed window, the new page
is opened in the same window every
time you select a hyperlink, replacing
whatever contents were there previ-
ously. In a framed window you can use
the window name to control the desti-
nation for any output.

Now that you know how frames
work, the first thing you need to do is
create the template to define and cre-
ate the frames. The code for template
EMPLFRAM.CFM is shown in Listing 8.

www.ColdFusionJournal.com

LISTING 1: HELLO1.CFM — Hello ColdFusion Template

<HTML>

<HEAD>

<TITLE>Hello!</TITLE>

</HEAD>

<BODY>

<CFOUTPUT>

Hello,

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>
</CFOUTPUT>

</BODY>

</HTML>

LISTING 2: HELLO2.CFM — CFOUTPUT Use

<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>

<I>The next 3 lines are not within a CFOUTPUT
block.</1>

Hello,

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>

<CFOUTPUT>

<I>The next 3 lines are within a CFOUTPUT block.</1>

Hello,

Your IP address is: #REMOTE_ADDR#

Your browser is: #HTTP_USER_AGENT#<P>

</CFOUTPUT>

</BODY>

</HTML>
LISTING 3: HELLO3.CFM — Demonstration of URL Parameter Passing

<HTML>

<HEAD>
<TITLE>Hello!</TITLE>
</HEAD>

<BODY>
Hello,

<CFIF IsDefined("'name')>
<CFOUTPUT>
The name you entered is #name#
</CFOUTPUT>
<CFELSE>
You did not pass a parameter called NAME
</CFIF>

</BODY>

</HTML>

LISTING 4: EMPLOY.HTM — HTML Code for Employee List
<HTML>

<HEAD>

<TITLE>Employee List</TITLE>

hosting.Net

www.sitehosting.net

www. ColdFusionJournal.com

FEBRUARY CFDJ

37

SPECIAL BOOK EXCERPT

b £ Yew o [ownrcem Heo

< = 3 F =2 & S & @
Back Redoed Faach Guds Pk Bsouly
A R e S AT =

Em

s Wilson, Lymn 1161

F leeark D T Ehta
st Sicioouen | mroin i | et | N CoFunst. [T Empmen b-IJ lnf'-v
R ColdFusion is very well suited for use witHin

HTML frames.

This template first defines the frames.
<FRAMESET COLS="50%,50%"> creates
two columns (or windows), each taking up
50% of the width of the browser window.

The two columns are then defined:
<FRAME SRC="employ3.cfm” NAME=
“employees”> creates the left frame;
the NAME attribute names the win-

dow; and the SRC attribute specifies
the name of the template to initially
display within the window when the
frame is first displayed.

There is no employee selected
when the frame is first displayed, and
therefore there is no information to
display in the details window (the right
frame). You obviously can't display
employee information in that frame
before the user selects the employee to
view, and so instead we display an
empty page. SRC="blank.cfm” loads a
blank page, the source for which is
shown in Listing 9.

The next thing to do is create the
employee list template. Actually, it is
the same as the one in Listing 7, with
one important difference. The URL to
display the employee detail must
include a TARGET attribute to desig-
nate which window to display the
URL in. If the TARGET is omitted, the
new data is displayed in the frame
that it was selected from.

The modified code is shown in Listing
10. As you can see, the URL has been
modified to include the attribute TAR-
GET="details” This specifies that the new
URL should be displayed in the frame we
named Details, the right window.

That’s all there is to it.

To try it out, go to http://yourserv-
er.com/a2z/scripts/11/emplfram.cfm.
Figure 11 shows the output as it
appears in framed windows. Try click-
ing any employee’s name in the left
window; the right window will display
employee details. \,«@'

ABOUT THE AUTHOR
Ben Forta is Allaire Corporation’s product evangelist
for the ColdFusion product line. In addition to
authoring the book excerpted here, he is the author
of its sequel, Advanced ColdFusion 4
Development. Ben also recently released
Sams Teach Yourself SQL in 10 Minutes.

] BEN@FORTA.COM 1]

</HEAD>

<BODY>

<H1>Employees</H1>

Black, Kim - Ext. 4565
Brown, William - Ext. 4443
Forta, Ben - Ext. 4615
Gold, Marcy - Ext. 4912
Green, Adrienne - Ext. 4546
Johnson, Dan - Ext. 4824
Jones, Steven - Ext. 4311
Smith, Jack - Ext. 4545
Smith, Jane - Ext. 4876
Stevens, Adam - Ext. 4878
White, Jennifer - Ext. 4345
Wilson, Lynn - Ext. 4464

</B0ODY>

</HTML>

<CFQUERY DATASOURCE="A2Z'" NAME="Employees">
SELECT FirstName, LastName, PhoneExtension
FROM Employees
ORDER BY LastName, FirstName

LISTING 5: EMPLOY1.CFM — The Employee List

SELECT LastName,
FirstName,
Middlelnit,
Title,
PhoneExtension,
PhoneCellular,
PhonePager,
EMail

FROM Employees

</CFQUERY>

<HTML>
<HEAD>
</HEAD>

<BODY>

</CFQUERY> _
<H1>#LastName#, #FirstName#</H1>
<HTML>
<HR>
<HEAD>
<TITLE>Employee List</TITLE> Title: #Title#

</HEAD> Extension: #PhoneExtension#

Cellular: #PhoneCel lular#

<BODY> Pager: #PhonePager#

E-Mail: #EMai I#

<H1>Employees</H1>
</BODY>

<CFOUTPUT QUERY="Employees"> LI
#LastName#, #FirstName# - Ext. #PhoneExtension# </CFOUTPUT>
</CFOUTPUT>

</BODY> FROM Employees
ORDER BY LastName, FirstName
</HTML> </CFQUERY>

LISTING 6: EMPDTL1.CFM — Passing URL Parameters

<CFQUERY DATASOURCE="A2Z" NAME="Employee">

WHERE EmployeelD = #EmployeelD#

<CFOUTPUT QUERY="Employee'>

<TITLE>#LastName#, #FirstName# #Middlelnit#</TITLE>

LISTING 7: EMPLOY2.CFM — ColdFusion Fields Can Be Used to Build
<CFQUERY DATASOURCE="A2Z'" NAME="Employees">
SELECT FirstName, LastName, PhoneExtension, EmployeelD

38 CFDJ FEBRUARY

www.ColdFusionJournal.com

<HTML>

<HEAD>

<TITLE>Employee List</TITLE>
</HEAD>

<BODY>

<H1>Employees</H1>

<CFOUTPUT QUERY="Employees">
#LastName#,
#FirstName#

[ic:ccc] - Ext. #PhoneExtension#
</CFOUTPUT>

</BODY>

</HTML>
LISTING 8: EMPLFRAM.CFM — Employee Frame Definition and Creation

<HTML>

<HEAD>
<TITLE>Employees</TITLE>
</HEAD>

<FRAMESET COLS="50%,50%"">
<FRAME SRC="employ3.cfm" NAME="employees'>
<FRAME SRC="blank.cfm" NAME="details">
</FRAMESET>

</HTML>

LISTING 9: BLANK.CFM Blank Files Are Used to Fill Empty Frames

<BODY>
</BODY>

LISTING 10: EMPLOY3.CFM — To Load a URL in Another Frame You Need

to Specify the Name of the Target Frame

<CFQUERY DATASOURCE="A2Z'" NAME="Employees'>
SELECT FirstName, LastName, PhoneExtension, EmployeelD
FROM Employees
ORDER BY LastName, FirstName

</CFQUERY>

<HTML>
<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>
<BODY>
<H1>Employees</H1>

<CFOUTPUT QUERY="Employees">
<A HREF="empdtll.cfm?EmployeelD=#EmployeelD#"
TARGET="details">

#lLastName#, #FirstName# - Ext. #PhoneExtension#
</CFOUTPUT>

</BODY> LI SC T(|3ND (I_::_,
</HTML> I AR R R RN ERENEN]

Virtualsca

www.virtualscape.com

www. ColdFusionJournal.com

FEBRUARY CFDJ 39

40

Hidden Gems in 4.011

What You Might Have Missed

CHARLES
AREHART

CFDJ FEBRUARY

Isn't 4.0.1 old news? And anyway,
wasn't it just a maintenance fix?

There were new features intro-
duced in the release. While the
Allaire Release Notes and Web high-
light pages mentioned several of the
more prominent features, there were
still more — far more — than you
would expect in a mere mainte-
nance release.

I've counted more than 60 new
features or changes, and many of
them aren’t well documented, if at
all. I'll discuss some of the most
important ones here. I'll also provide
links to the Allaire 4.0.1 documents.

Why This Is an Important Subject,
Even at the Dawn of 4.5

Even if you think you know what
was new in 4.0.1, you owe it to your-
self, your organization and your
associates to review this article to be
sure you haven’'t missed out on any-
thing. Many of them are features or
improvements that, if you dont
know they’re there, you might never
be able to take advantage of them.
They’re not all that obvious.

For those who may be skipping
from 4.0 to 4.5 because they just did-
n't notice 4.0.1, | hope this serves an
even more vital role. If you only read
about the new features in 4.5, you
might miss out on the many impor-
tant new ones that came in 4.0.1. In
some instances you may encounter
errors due to changes that were
introduced in 4.0.1 but may not be
documented as “changed” in the 4.5
release notes (since they’re really not
new to 4.5).

More Than a Maintenance Fix
Maintenance releases are just
supposed to fix things that are bro-

iven that most people are now introducing and

instaling ColdFusion version 4.5, Allaire’s latest

release of the server and studio software, it may
seem strange to read an article on 4.0.1.

ken, and even in announcing the
pending 4.51 release Allaire has said
that it won't introduce new features.
Version 4.0.1, released as a free
update to all 4.0 customers in April
1999, offered a virtual cavalcade of
new features. Many of them were
quite important, strategic, enter-
prise-level enhancements.
Here are a few that were high-
lighted in the Allaire release notes:
» Failover clustering support in NT
e Support for advanced security in
Solaris
* New native database drivers for
Informix and DB/2
e New UNIX support for HP/UX
< European currency support

The problem is that there are
more than nine documents — if you
can find them - on the Allaire site
that describe all the changes. Even if
you read the most significant docu-
ments, you could have missed
dozens of other changes since no
single document pulls it all together.

Many smaller features, not as well
documented — what | consider truly
hidden gems - introduce important
new functionality that might thrill
the day-to-day CF programmer or
Studio user who missed them:

e Onrequestend.cfm, the corollary
to application.cfm that executes
at a template’s conclusion

e Short-circuit evaluation where,
for instance, you can now say
<CFIFis defined(“form.size”) and
form.size is not “small”> without
receiving an error when
form.size doesn’t exist

e A new ListQualify function that
can take a list of string values and
place quotes around them,
which is particularly important

for use with a SELECT ... IN
clause, for example

e A new PASSTHROUGH attribute
for CFFORM, CFINPUT and CF-
SELECT that allows you to speci-
fy style sheet and other HTML
attributes that Allaire hadn’t
thought to include in those tags

e Cached database connections,
which can be released on demand
or via an optional timeout (to
allow updates to locked Access
files without having to restart the
server or play games with causing
SQL error to unlock a file)

« A date/time stamp request fea-
ture* that makes CFINSERT and
CFUPDATE mark the date/time
of the insert/update rather than
the time the form was sent to the
browser; it uses a hidden form
field with the name of the
intended column and a value of
Currentdate()

e The ability to use an ODBC data
source for advanced security
authentication — a boon for those
unable or unwilling to use an
operating system security domain
or LDAP server for authentication

e The ability to use Oracle and
LDAP databases for storage of
advanced security configuration

There are still more than 50 other
new features in CF Server. And there
are quite a few useful changes in CF
Studio too, including but not limited
to the following:

e Pressing F1 while the cursor is on
a function or tag will open that
function’s Help page.

e The Help system’s “find” feature
now leverages a Verity index,
making searches much faster.

e You can wrap selected text in

www.ColdFusionJournal.com

Gareer
Opportunities

www.ColdFusionJournal.com FEBRUARY CFDJ 41

42

CFDJ FEBRUARY

Ol D ON

pound signs using CTRL+3 (which
makes sense, if you notice that 3
has the pound sign above it).

Some of the new features are

changes in behavior. If you arent
aware of them, they can cause fail-
ures in applications that aren't mod-
ified. They’re also important for
those skipping from 4.0 to 4.5:

CFAPPLICATION must now
specify a NAME attribute.
CFABORT no longer stops com-
pilation/interpretation of a tem-
plate, so if the code following it
gets an error, it will now do so
even though code isn’'t executed.
If you use a session variable
named “sessionid”, you’ll have
conflicts with the new automati-
cally created 4.0.1 session vari-
able of the same name.

Allaire documented most of these

changes and enhancements, but
they were spread among several
release notes and Web documents.
I've scoured the Allaire site for infor-
mation on this subject and have
come across still more undocument-
ed new features.

Speaking of documentation,

there were new additions to the
Allaire manuals as well as substan-
tive changes. For example:

Using ColdFusion Studio took a
lot of information from the Devel-
oping Web Applications manual
and also expanded on important
Studio subjects.

A Quick Reference serves as a
handy listing of CF tags, functions
and variables.

The Getting Started and Adminis-
tering ColdFusion Server manuals
have been revised.

The Advanced ColdFusion Devel-
opment manual was discontinued
and its contents folded into the
other manuals.

Just a Few More

There are so many other new fea-

tures, but I’ll just name a few more of
the most significant ones.

There is now an option to cause
“stack trace” tracking in excep-
tion handling, controllable in the
Administrator and with a new
cfcatch.tagcontext variable.

There is also an option to control
the display of a template’s path

on a CF error screen.

e You can now perform authenti-
cation using certificates.

* You can now “write to” Form and
URL variables,* setting them with
CFSET and CFPARAM. The bene-
fit: being able to create data for a
CFINSERT/CFUPDATE on a form
action page rather than solely on
the form.

* A new “type=readonly” attribute
was added to CFLOCK so you
don’t always have to perform an
exclusive CFLOCK.

e The DateCompare now has a
third “datepart” parameter to
allow comparison on less than
the complete date and time.

e ListValueCount counts the num-
ber of instances of a value in a
list.

e StructKeyList lists the key names
(elements) in a structure.

e Improvements were made to
custom tags (passing structures)
and exception handling (user-
defined exceptions).

e There’s a new “type” parm for
CFPARAM (any, array, boolean,
date, numeric, query, string,
struct, UUID, variable name).

e There's a new IsProtected function.

e They've added support for x.509
certificates.

» Administrator pages no longer
show debugging info, even if
debugging is turned on.

The new release fixed a couple of
rather severe security issues, includ-
ing limiting the sample application
“expression evaluator” to respond to
page requests only from the machine
on which it’s installed.

And in Studio?

There are several other new fea-
tures in Studio 4.0.1, in addition to
those mentioned above. For example:
< You can create, rename and delete

folders in remote connections

(both FTP and RDS).

e Pressing Ctrl-Shift double-click
will select that tag, its end tag
and elements within it.*

e There’s an option to turn on an
outline bar around the current
line selected (in options>set-
tings>outline current line).

e You can specify that Netscape
Navigator should be used as the
internal browser for CF Studio

and HomeSite, if you have the
experimental NGLayout (Gecko)
engine from mozilla.org installed
(probably not worth the trouble
since then you'd be browsing with
a version that your users likely
wouldn't have. Use the “external
browser” feature instead).

e There are new and improved tag
editors.

e There’s now a warning when you
try to use Design mode on a cfm
file.

« A remote connection to an FTP
server can designate the remote
directory as being relative to
either the Web root or a server-
specified user directory.

e There’s support for the third-
party link verification tool
Linkbot 4.0.

e The Table Sizer (Quick Table)
control on the Table tab can now
expand to the limit of the screen.

Sometimes It’s the Little Things

One subtle change you might not
notice will mean a lot to keyboard
mavens: if during file>open and save
dialogs you press the enter key while
selecting a directory, Studio will now
open that directory and display its
files. In 4.0 it would attempt to open
or save the file instead. Those who
know the frustration of this nonstan-
dard behavior have leaped (or will
leap) at the discovery.

Sometimes it really is the little
things!

Along the same lines, if you
change the width of columns in the
resource tab (such as the date/time
or file size columns), they’ll be saved
when Studio is closed. It didn't do
that previously, so many developers
simply stopped trying to arrange
these columns. There is also a new
“view” option when you right-click
on this area, to choose whether to
even list the date modified, docu-
ment type, size, and so on. Suffer no
more!

Still more that may be trivial to
some but a godsend to others: you
can change the default behavior
of File>Save As so that it (more
logically) places its new file into
the same directory from which the
source file was opened. Other-
wise, the default (to many, illogi-
cal) behavior is to store it instead
in the directory currently pointed

www.ColdFusionJournal.com

to in the resource tab. The setting
is in options>settings>general
under the perhaps paradoxically
named “display current local fold-
er in file dialogs.”* By “current
local folder” it means the one
pointed to by the resource tab, not
the “current” directory in which
the source file was located. To
clarify, you'll probably want to
“deselect” that option to get what
I've referred to as the “more logi-
cal” behavior. But some like the
other approach, and so as not to
confuse folks used to the “default”
behavior, it remains an option
that you can control and must
change manually.

One last thing about Studio
4.0.1. It’'s not a benefit but rather an
odd bug. Sometimes, for reasons
that Allaire has not been able to
pin down, you may find that on
exiting the application you receive
Windows “access violation” errors.
This has been addressed with a
replacement version discussed in
Allaire Knowledge Base article
11868.

Whither the Documentation
Where can you learn more? Well,

of course, you can read the Allaire

documentation, such as the CFML

Language Reference and Developing

Web Applications in ColdFusion.

These certainly document the fea-

tures but don't really identify what

things have changed. For that you
can find more in the 4.0.1 Release

Notes and several Web documents

that highlight many of the new fea-

tures, such as:

1. 4.0.1 Update Summary:
www.allaire.com/handlers/index.
cfm?1D=10719&method=full&l o
cationlD=324

2. Server 4.0.1 Release Notes:
www.allaire.com/handlers/index.
cfm?1D=10735&Method=Full

3. Studio 4.0.1 Release Notes:
www.allaire.com/Handlers/index.
cfm?ID=10025&Method=Full&C
ache=0ff and
www.allaire.com/handlers/index.
cfm?ID=10734&Method=Full
(seems a duplicate)

4. Studio 4.0.1 Update FAQ:
www.allaire.com/products/cold-

Enhanced
Technologies

fusion/fags/401updatefaq.cfm
5. Documentation Updates for
ColdFusion 4.0.1:
www.allaire.com/handlers/index.
cfm?ID=10429& method=full

There You Have It!

As | hope these lists have demon-
strated, 4.0.1 was much more than
just a maintenance release. There
were so many new features that
ranged from the relatively minor to
some fairly significant ones. Again,
it’s really important that you become
familiar with most if not all of them.
They’ll almost certainly make you
more productive, leaving more time
for...learning about 4.5.

’ 4

= Testing revealed that four of the items
listed in the 4.0.1 documents as new were
in fact present in 4.0. Perhaps they had
not been documented in 4.0. Even so,

they are interesting and easily missed, so _

we have kept them here.

ABOUT THE
AUTHOR

Charles Arehart is an
Allaire-certified trainer
and developer working
with Fig Leaf Software
and is a frequent speaker
at user groups throughout
the country.

www. ColdFusionJournal.com

HRIE
Wir

10

=ik B

CandFusion & a

[P OUHE

=)
[53

: mirusen! '™ E g re

jorn CandiFusion| T

FEBRUARY CFDJ 43

REVIEWED
BY
EMILY

ABOUT THE
AUTHOR

Emily Kim, director of
development solutions
and cofounder of
Trilemetry, Inc., Is a
certified Allaire
instructor. She serves
as a technical and
developmental editor
and technical reviewer
on computer books
for several publishers
and is a contributing
author to Mastering
ColdFusion 4.

CFDJ FEBRUARY

KIM |

ho else is sick and tired of

hearing Allaire’s product

evangelist, Ben Forta, touted
as the CF god? Ben Forta this, Ben
Forta that. All right already! So he
and some other CF gurus wrote a
couple books about CF and now we
can't go anywhere in CF hyperspace
without hearing about it.

Well, bad news for us. He’s done it
again. But this time in the related but
separate arena of Structured Query
Language (SQL). His Teach Yourself
SQL in 10 Minutes is an excellent
introductory book that also serves
quite nicely as a pocket reference.

Before 1 go any further with this
review and sing his praises, | have to
disclose that I've worked with Ben on
other projects. But don't think this
makes me go goo-goo and starry-eyed
in his presence. Quite the contrary —
I’'m actually one of his harshest critics.
When | first picked up this book, it
was with red pen in hand, ready as
always to mark it up with corrections
and comments. Unfortunately for my
happy pen, this book is technically
sound with only a few minor errors
and the content is very well written.
(In the near future you'll be able to
find information about errors at
www.forta.com/books/0672316641.)

Bad news first: this book is not
designed as an advanced discussion
of SQL. | was really looking forward
to a book that could take my SQL
knowledge to the next level. Howev-
er, while Ben certainly touches on
some advanced topics, such as
stored procedures and triggers, peo-
ple who already know SQL well or
who've worked with it on a daily
basis will probably find that it’s more
useful as a pocket reference rather
than a learning tool.

An Introduction to SQL

sAMS
leach Yoursel

il

heick steps for
fast reswhts

FE T il i ol
e |0 o

H\ﬂ‘-‘ lJ
Sy

~
—a

Nevertheless, | still recommend
that nonbeginners who don't have
formal training with SQL read the
book because, while the majority of it
will probably be review, you may be
able to fill in some gaps in your SQL
knowledge. There are plenty of state-
ments littered throughout the book
that clarify SQL syntax and a fair
number of gold nugget hints about
best practices and SQL optimization.

This book also abounds with
Notes, Tips and Cautions that help
clarify points and try to keep you out
of trouble. In one tip dealing with
transaction processing, Ben states:
“You cannot roll back CREATE or
DROP operations. These statements
may be used in a transaction block,
but if you perform a rollback they
will not be undone.” While this may
seem intuitive to some, it wasn't
obvious to me and | was glad to see it
emphasized.

The book begins with a great
overview of SQL but doesn’t become
too lecture-driven. There’s at least
one example SQL statement on
almost every page of the book, and
associated scripts and database files

Sams Teach Yourself

SQL in 10 Minutes

By Ben Forta
208 pages, Macmillan

that can be downloaded from the
Web site (the URL listed earlier in
this review). This allows those over-
achievers to try out each line of code
for themselves. And for those of you
who have to work with different
RDBMSs, Ben also tries to point out
syntax differences between SQL
Server and Oracle when either dif-
fers from standard SQL.

Last but not least, the appendices
(unlike many other books) also have
some useful material. Besides the
review of SQL data types, there’s a
list of frequently used statements
and — my favorite — a list of SQL
reserved words.

Try as | might, | found it difficult
to be discontented with Teach Your-
self SQL in 10 Minutes. It packs an
extraordinary amount of informa-

He’s done it again.
But this time in the

related but separate
arena of Structured
Query Language

tion into a tiny package. Weighing in
at 208 pages and about the size of
half a piece of paper, it's amazing
how much good, useful information
it actually holds. While I'm still itch-
ing for more advanced, in-depth
examples, I'm glad to have the book
sitting on my reference shelf. "Q@’

Y Q1R \Y R O

www.ColdFusionJournal.com

Gareer
Opportunities

www.ColdFusionJournal.com FEBRUARY CFDJ 45

U
[0
|
L/
o

ColdFusion & Generator Stock Charts

Creating Stock Chart graphs

4

Al
O

ince my first article on Generator in CFDJ (Vol. 1, issue 5), Macromedia has
BY released version 2. With this version you have full Flash 4 functionality and a
ANDREW host of new Generator objects to use, from tickers to tables. What I'll show in
STOPFORD . this article is the combination of Flash and another new object, Stock Chart.
Stock Chart Object Using a Text File with a Stock source. To do so I'll create a data-

The Stock Chart object will give us
astock chart graph just like those you
see on the big commercial Web sites
that track stock data. This object
gives us several options, such as
“candle” graphs and display and
color options. I'll cover these in detail
later in the article.

Creating the Stock Object in Flash

Open up Flash (Generator
objects are now freely available on
the Macromedia Web site) and
choose Window - Generator Objects
from the menu. Here you'll be pre-
sented with Generator objects all
lined up in a toolbar. What interests
us is the Stock Chart object.

Drag the object onto your movie
and the object’s properties menu will
open up.

Stock Chart Data Source

The format for Generator objects
changes from object to object. The
Stock Chart object’s data source has
the following format.

Chart Object

First, create the text file, then
modify the data source of the Stock
Chart object to point to it. To do
this, make sure that your object’s
properties window is open (dou-
ble-click on the Stock Chart object
in your movie) and open up the
datasource window by clicking the
little button in the datasource
property.

Next, type the path to the data
text file (i.e., C:\myfiles\data.txt) and
click OK (if you've saved the Flash
File in the same directory as the text
file, you don’t need to type the path,
i.e., data.txt).

Testing the Movie in Flash

Before we can run our Generator
file, we first have to set up Flash.
Open the Publish Settings box by
selecting File — Publish Settings.
Make sure that Generator is select-
ed before you press OK.

To run our movie, choose Con-
trol — Test Menu from the menu
options and your movie will look

base data source and use ColdFu-
sion to read the data and format it
for Generator to use.

Database Data Source

| created the data source in an
Access Database as shown in Fig-
ure 3.

Monday ~ Tuesday Wednesday Thursday Friday
S=W Standard Chart output

45

open, close, high, low, HLABEL like Figure 1. _ _
M 33 0 3l Monday To make the chart a little easier - :
)))) to read, change the following values onday ~ Tuesday ~Wednesday Thursday Friday
38, 45 48 37, Tuesday in the movie's properties. ST Vodified Chart output
32 2(2) 22 23 :\:}ednzsday Chart Property Value The CFM Code
' ’ ' ' .urs Y Chart Type CandleSticks The next step is use ColdFusion
2, 3%, 42, 29, Fiday Value Placement Over Chart code to read the database and for-
Value Display RollOver mat the data in a format that Gener-
Each value represents a value for

a given day - for example, for Mon-
day its opening and closing values
and its high and low values, data
that’s required for stock chart value
for a given day. To show this off I'll
first demonstrate how it’s used with
a text file.

CFDJ FEBRUARY

Your chart will now look like the
chart shown in Figure 2.

Using ColdFusion with the Stock
Chart Object

We can now replace our text file
data source with a ColdFusion data

ator will understand; we're really
trying to emulate the text file data
source that we used earlier.

<cfquery name="stockl" data
source="kimmuli" dbtype="0DBC'"">

SELECT open, close, high, low, HLABEL

www.ColdFusionJournal.com

|| open | close | high | low | HLABEL
3k a8 40 31 Monday
i 45 45 a7 Tuesday
| |45 40 45 36 Wednesday
| |40 32 42 27 Thursday
| |32 35 42 29 Friday
*
Matabase data
Monday Tuesday —Wednesday Thursday Friday
FROM stock tain characters other than those Mrt output from ColdFusion page
</cfquery> needed to be present in the data
<cfcontent source (HTML characters would | ability to test out all the elements

type="text/plain">open,close,
high, low,HLABEL

<cfoutput query="stockl">#open#,

#close#, #high#, #low#, #HLABEL#

</cfoutput>

The code reads the database and
displays it in a text format. Note the
lack of HTML code in the code. This

is because the data source can’t con-

S T e |

—
=
= |

NN The ColdFusion URL page in
datasource window

cause errors). If you do need other
characters, it's possible to use
escape codes. See the Macromedia
Generator support site technotes for
details.

Adding the CFM File to the
Data Source

The final step is to add the CFM
page to the Generator data source of
our Stock Object, as shown in Figure
4.

Note that you must use the full
HTTP path to the CFM file. Once
you've added the file, clicked OK and
tested it, you should see something
like Figure 5.

A nice feature of Flash is the

ISite
Design

www. ColdFusionJournal.com

of your Generator object before
you test them on your Web site.
Remember to change the format-
ting of the Stock Object as | did,
using the text example at the start
of this article.

Summary

Generator 2 has many new fea-
tures, and one of the most visually
appealing is the Stock Chart. Here
I've shown how you could use
either a text file or a Database/CFM
page to get the data to the Stock
Chart. %,

Your source for
the entire family

of Allaire products

ABOUT THE

AUTHOR
Andrew Stopford is a
Web developer and
consultant from south
Manchester in the UK

and a Macromedia
evangelist for Generator,
He has lent his hand to
many Generator Sites
around the world.
Andrew’s kept busy
answering questions that
the Generator community
posts in the Macromedia
Generator NG and other
information sites. He's also
the creator of Kimmuli, a
code tool for Generator.

BUY SpPECTRA.com

<Dwned and operated by Allaire Spectre®onthusiasts>

Save up to B0% bafore March 1

on all product purchases

<Froee test drve of Allaire Spectra>

RAFP builder to jumpstart your project with
Allaire Spectra and ColdFusion® consultants

Call Aene tadmy 1. BB8.255.97 00 est. 107

Bugfipscirncom im a
CFcommunity LLD prope—ty
TesielP a0 8 regpeared swcinrars, s Sl e Llarw e Adees Ppaces, sre s
iy Sproew Bor sew rwoerneris o e Do wior H“HTM“
Ll wer Lkt Freporwsar,

FEBRUARY CFDJ 47

4

)
O

A Fusebox How-To

Using Fusebox to gather requirements

BY
HAL
HELMS

User wants to add a note within a

After reading my first two Fusebox
articles in last year's CFDJ (Vol. 1,
issues 3 and 4), he wrote, “l under-
stand what you are explaining but
implementing it is a little harder than
I thought.”

I wonder if others may be having
this same problem — understanding
the theory but a little hung up on
the details. In this article I'm going
to walk through developing a Fuse-
box application so you can see the
theory put into reality. I'm assum-
ing you've already read enough
about the Fusebox methodology to
understand how it works. If you
need a refresher on this, check out
the back issues of CFDJ online for
the two articles | wrote with Steve
Nelson and Gabe Roffman, or see
the sidebar for a quick recap of
Fusebox rules.

| find the hardest part of a large
Web application is not the actual
coding - thanks to Fusebox — but

addNote

category and associate that note with
the page user is on.

User wants to view notes previously

entered fo

User wants to see a listing of all notes.

User wants to be able to delete a note.

User wants to be able to mark a note to

change its

r that page.

setNoteStatus
status. This can be used by

clients to identify questions they have

answered,
tasks that

CFDJ FEBRUARY

Ml Steps in Fusebox methodology

or by developers to show
have been completed, etc.

Fuseaction(s

showPageNotes

showAlINotes

deleteNote

my Guru-on-Call service (www.TeamAllaire.com/hal).
He requested help in identifying the fuses he would
need for his application.

| recently received an inquiry from a developer about

determining what the actual job
requirements are. I'm not alone in
this; it's a common complaint of
developers. Over the years I've
tried, in a variety of ways, to nail
down customers so they wouldn't
keep changing their minds. One day
it occurred to me that the reason
customers wouldn't stop making
changes is because they couldn't.
They couldn’t tell me the “require-
ments” until they saw them reflect-
ed in the application.

If this is true, it's my job to make
sure the users can see the applica-
tion — and prod, poke and punch it
— until they’re sure that what they
see is what they want. Only then do
| begin the actual coding. | place
great emphasis on a simulated
application that looks like the real
thing to the users. When they click
buttons, things happen. Links are
live. Forms accept inputs. And while
it looks like a real application, it’'s a

Fuse(s

dspPageNotes.cfm provides the user with
a form for entering a new note.
actinsertNote.cfm does the actual DB
processing.

dspPageNotes.cfm

dspAllNotes.cfm

dspPageNotes.cfm provides the user with
a “delete” link.

actDeleteNote.cfm does the actual DB
processing.

dspPageNotes.cfm provides the user with
a checkbox next to each note.
actSetNoteStatus.cfm does the actual

DB processing.

completely different matter under
the hood. There’s no database
hooked up to the application. There
are no persistent variables, perhaps
no variables at all. Any use of code
(CFML or otherwise) is there only to
present a convincing simulation.
We haven't begun coding yet; we're
doing this because experience has
shown that it’s the only way to find
out what kind of application we
should build.

This methodology takes some of
the stress off skilled programmers.
In practice | find that over half the
work required in developing an
application can be done without
involving programmers - a wel-
come discovery as they’re hard to
find. This prototype is handled by
people skilled in interface design
and graphical arts who create
essentially static Web pages that
mimic their real counterparts.

It's during this process that ques-
tions, comments and concerns sur-
face. | needed a way to capture and
contain this information in a central
location where all those involved in
the development of the application
could communicate and contribute.
Over time we've developed a method
that effectively lets us define and
refine what the application should
be, do and look like.

This method relies on some
ColdFusion code running alongside
the designer’s prototype work.
Since designers typically arent
coders, we ask only that they save
the Web files with a .cfm extension
and append the following code
onto each of these pages:

<cfinclude
template="devnotes/index.cfm”>

www.ColdFusionJournal.com

At runtime this code calls a small
Fusebox application at the bottom
of the page that produces some-
thing similar to Figure 1.

This allows us to preserve the his-
tory of the development of the appli-
cation while providing a map for its
continued evolution. I'm going to
show you how | approached build-
ing this Fusebox-based mini-app,
which | hope will make the process
of creating a Fusebox application
clearer than a mere reading of the
rules.

| start off application develop-
ment — even of small apps - by cre-
ating “use cases” to identify require-
ments for the application. These are
natural language statements that
require no technical background
and are ideal for communicating
between client and developer. At
this point, use cases form the basis
of our understanding of what the
application should do. A sample use
case might look like this:

“User should be able to log onto the
system and be validated as either a
user or administrator.”

While use cases are wonderful
for determining requirements for
the application and for communi-
cating with clients, they’re too gen-
eral to be of much use to develop-
ers. For this | rely on the skill of
interface designers who understand
how to translate the client’s require-
ments into actual pages that show
how they’ll do it. This is the proto-
type | spoke of above. It’s an itera-
tive process; at each step we hope-
fully come closer to finding exactly
what the client needs. Once all par-
ticipants have agreed that the appli-
cation is fully defined, we arrive at a
prototype freeze. Now it’s my job to
match the use cases (as interpreted
in the prototype) with one or more
fuseactions.

Fuseactions, remember, define
what the application is actively
involved in; at any point there’s
only one fuseaction operating. A
fuseaction is a request for action
that’s sent only to the fusebox (usu-
ally named index.cfm). It's funda-
mental to Fusebox that all requests
for action go through the fusebox,
not to individual fuses. Without this
we’re on a slippery slope where one

www. ColdFusionJournal.com

Fusebox Rules

1. The application has a central
page called a fusebox.

2.The fusebox is responsible
for handling fuseactions that
are passed to it. These are
requests for some action
such as logging in a user, dis-

playing a menu or updating a
database.

. Fuses are small bits of code
that are called on by the
fusebox to perform some
action in the course of
responding to a fuseaction.
Examples are “dspShowUser-
LoginScreen.cfm” and “act-

fuse calls another and that fuse
calls yet another until we end up
with a tangled mess of intricate
dependencies between fuses,
defeating our goals of readability
and reusability.

Once the request for action (the
fuseaction) is sent to the fusebox,
the fusebox calls on fuses to carry
out the action. So the development
process goes like this: use case —>
prototype —> fuseaction(s) —>
fuse(s). By creating a table that
shows the associations between use
cases, fuses and fuseactions, | can
see how complete my application
architecture is. Table 1 is the table
for this application.

As Dennis Miller says, “l don’t
want to get off on a rant here...,”
but let me say a word about naming
fuses. The Fusebox.org site sug-
gests naming prefixes for fuses
based on the fuse’s job: dsp_fuse-
name for display-type fuses and so
forth. I've heard heated debate over
the “correct” naming scheme and |
think this misses the key point -
Fusebox is a development method-
ology, not a naming convention.
My position is, if you find the nam-
ing scheme to be helpful, by all
means use it. If you have another
naming scheme — possibly already
a standard within your company —
then use that. The power of Fuse-
box doesn’t depend on how a fuse is
named, but on its clarity, concise-
ness and precision.

Now that | know the fuses I'll

ValidateUser.cfm”.

4.There’s only one active fuse-
action at a time.

5. Fuses define their exit states
as members of a structure
called “RFA” (for “return
fuseactions”).

6. A fuse can never call another
fuse directly, but must always
return to the fusebox if
another action is needed.

. The Fusedoc section of a fuse
provides the information
needed to interact with that
fuse.

need, | can add Fusedoc comments
(see my column in the last issue of
CFDJ [Vol. 2, issue 1] for more on
this) and a generic message to cre-
ate a “fuse stub” for each fuse. See
Listing 1 for my fuse stub for the
fuse “actDeleteNote.cfm”.

This is such a small fuse (here, at
least, smaller is better) that the line
tends to blur between fuse stub and
fuse. If you're just starting out writ-
ing fuse stubs, you may not be sure
how far you should go. When does
the stub become the actual fuse?

My test for fuse stub complete-
ness is this: Can another coder
who’s competent in ColdFusion,
but doesn’t know the scope of the
application, successfully complete
the fuse? When the answer is Yes,
the fuse stub is ready. If this were a
display-type fuse, youd see the

D logmvmsral Meilers

T fum Pl oy

Lharnipen

1. T O v svard b i S e e @ e sdier B
SO, AR T s

3. T ¥de yser' pip oo i Rl
i Funrie i ||
I'Beré | 'oemwrssris

T amried by e Tuniiing

L s

T when & O e TR R Dl

1. [T Caten demean by Be tirse fasd 16 D saved n &0

Cunkiome Comks febeel
1 wehich My il NOT

Iy, Nileh” RO

1. [T Thua OB forvers e e ok b weniltd B o s i rmverme comlrsnsdy

I o v e 00 20 0wt v, it sy v nge up o Rara

[CNEELT
] 1R

FOgram sl | 1re
Bl remiid it

Caird D g 3 =
bl Lipmwmgnh
Teake a0z

T g wa i

Tt erior B
|

Screenshot of the applet in use

FEBRUARY CFDJ

sHop ONLINE AT JDJ

ORE.COM For BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

EASTLAND DATA _SYTEI\/_IS
Internet Shopping with
Java Shopping Cart

...Described as the most progressive and interac-
tive form of shopping on the web today...This
Java Applet provides a com-

plete user interface package for = &

Internet Shopping Web Sites.
Using Java technology we pro-
duce a drag-and-drop shopping
user interface that is fun and
easy to use, encouraging shop-
pers instead of frustrating them
with confusing controls that are hard to follow. And
the easier it is to shop, the more you seII.$

......................... 294%
Hybrid Shopping Cart

This Java Applet provides a complete user inter-
face package for Internet Shopping Web Sites. A
"Hybrid" is defined as an offspring of two varieties.
A blending of the best features from our CGl and

Java shopping products, we
took the most powerful aspects
of Java technology; real-time,
on-screen updating and com-
putational capabilities. And
combined those with the most
desirable features of our CGI
shopping Cart, namely it's flexibility and compati-
bility with web designers with artistic talent.
*29

499

CGl Shopping Cart

The Shopping Cart automates the Shopping

Process to make shopping on your site intuitive,

straight forward, and enjoyable! It's one of the

most affordable Shopping Carts

because it was designed for

small businesses. Specifically

for entrepreneurs who are test-

ing the Internet waters, and

can't or don't want to make w

large investments into bells and

whistles for their site. But simply want to make

shopping on their site easy for the customer.
29

499

Guaranteed Best Prices
JDJ Store Guarantees the Best Prices.
If you see any of our products listed anywhere at a
lower price, we'll match that price and still bring
you the same quality service.
Terms of offer:
« Offer good through October 31, 1999
= Only applicable to pricing on current
versions of software
« August issue prices only
« Offer does not apply towards errors in
competitors' printed prices
= Subject to same terms and conditions

Prices subject to change.
Not responsible for typographical errors.

ORDER ONLINE

With ColdFusion 4.0, create Web applications for
self-service HR solutions, online stores, interactive
publishing and much more. It’s the integrated
development environment that has all the visual
tools you need to create Web applications quickly
and easily. From simple to sophisticated ColdFu-
sion gives you the power to deliver the Web solu-
tions you need — faster, and at a lower cost.

ColdFusion Studio 4.0.c.cc.ovuuin.. $354%
SkillBuilding with ColdFusion Interactive Training CD $284%

;_g-numfusmn

ALLAIRE

—

JRun is the industry-leading tool for deploy-

ing server-side Java. JRun is an easy-to-use

Web server “plugin” that allows you to

deploy Java Servlets and JavaServer Pages.

Servlets form the foundation for sophisticat- =
ed server-side application development.

Java servlets are platform independent, easy

to develop, fast to deploy, and cost-effective

to maintain.

JRUN o $558%

PROTOVIEW

The Java Enterprise Editions offer you a choice between comprehensive packages of
award-winning AWT or JFC components along with enterprise-level support and sub-
scription service. Powerful, extendable, lightweight components built on the foundation
of JFC, the ProtoView JFCSuite contains JFCDataCalendar, JFCDataExplorer and JFC-
Datalnput. The JSuite (AWT) includes the DataTableJ grid component with JDBC and
Visual Café database support. Also includes TreeViewd, CalendarJ, TabJ and WinJ.

JSuite Enterprise Edition $818%
JFC Enterprise Edition °818%
JSUILE. . oo $328%
JFCSUIE. . . o\ oo e e *408%

Intr@Vision Foundation helps bring ColdFusion
development to the next level. It provides an
out-of-the-box application security architecture
for handling your most complex intranet and
extranet needs. Instead of spending 30% of
your development time adding security to every
application you build, it gives you a proven solution with a single line of code.
Intr@Vision Foundation allows your developers to focus on building business
solutions, not infrastructure.

Galile

ELTYEEEd
el

Intr@Vision Foundation $3499%

WW\W/.

GUARANTEED
e==s BEST PRICES

HomesSite is the award-winning HTML editing
tool that lets you build great Web sites in less
time, while maintaining Pure HTML. Unlike
WYSIWYG authoring tools, HomeSite gives you
precise layout control, total design flexibility and
full access to the latest Web technologies, such
as DHTML, SMIL, Cascading Style Sheets and
JavaScript. HomeSite 4.0 is the only HTML editor
featuring a visual development environment that
preserves code integrity.

B

{ :
i-mmE?
.-"-'

HOMESIte 4.0 oo 587%

INSTALLSHIELD

InstallShield Java Edition 2.5 is the powerful —_
tool developers require to produce bulletproof
InstallShield installations with Java versatility.
You can target your application for multiple
systems with cross-platform distribution. And s~]
InstallShield Java Edition 2.5 offers the key \4 i
features and functionality designed to let devel- I y

opers go further in distribution and deploy-
ment.

InstallShield Java Edition

JProbe Profiler is the most powerful tool available for finding and -
eliminating performance bottlenecks in your Java code. JProbe

Coverage makes it easy to locate individual lines of untested code and reports exactly
how much of your Java code has been tested. JProbe Threadalyzer lets you pinpoint
the cause of stalls and and deadlocks in your Java applications and makes it easy to
predict race conditions that can corrupt application data.

JProbe Profiler w/ Standard Support (inc. Jerobe Memory bebugger) . . 4647

JProbe Coverage w/ Standard Support *464%
JProbe Threadalyzer w/ Standard Support $464°°
JProbe Suite w/ Standard Support $934*°

Synergy is a ColdFusion-based Web application
framework for instantly deployable corporate

intranets. It consists of an Application Services

Layer, which offers central security and adminis-

trative services, and eight core collaborative

applications. Synergy's open architecture is

designed for implementing existing ColdFusion
applications and developing new ColdFusion

applications specifically tailored to the customer's needs.

Synergy SOHOo $499%°

interface designers’ work reflected
here.

Once all the fuse stubs have been
written, | can either parse these out
among my team of programmers or
I can write them myself. In both
cases a good portion of the great
time-waster — uncertainty — has
been put to rest.

Of course, fuses by themselves
won’t work. For that we need a fuse-
box, and I begin with a skeletal one.
You'll probably want to have a tem-
plate that you can call up every time
you need to create a new fusebox.
See Listing 2 for my fusebox tem-
plate.

Right now there are no <CFCASE>
statements — meaning this fusebox
can't handle any fuseactions. But

even this skinny version of a fusebox
already has some useful behavior.
Once development has moved from
prototype to production, your clients
can click through the application
without your worrying about the app
blowing up. Instead of error mes-
sages scaring your users, this fusebox
ensures that in cases of fuseactions
not yet implemented, the user will
see a generic “not done yet” message.
So when development starts, a user
can click through the entire applica-
tion but it won't do anything. As the
application approaches completion,
more and more of the sections will
work.

If I've done a good job writing
the fuse stubs, | can tell how close
we are to completing the project by

checking the list of fuse stubs that
remain to be written. Further, since
our application is failure-resistant,
others can check on the progress of
the application, reducing stress and
guesswork.

I encourage you to look at the
complete code files for this little
application at www.TeamAllaire.
com/hal. In addition to being a handy
app, these code files show how I
approach building a Fusebox appli-
cation. And while you may find that
you build your Fusebox applica-
tions differently, we can all benefit
from having certain standards that
we agree on. &

ABOUT THE
AUTHOR

Hal Helms is a Team
Allaire member living in
Atlanta, Georgia. A
frequent writer on
ColdFusion and Fusebox,
he also offers training
and mentoring on these
subjects.

<1-- actDeleteNote.cfm -->
<I-—-

|1 actDeleteNote.cfm
to me. When 1°m done,

fuseaction of “RFA.completion”.

|1 hal.helms@TeamAllaire.com

with

END FUSEDOC
>

<cfoutput>

not implemented yet!</h3>
</cfoutput>

<!--index.cfm-->

into attributes --->
<cf_formURL2Attributes>

<I--- Provide defaults --->
——>

ic info.

<cfoutput>

LISTING 1

|l 1 handle the database processing of deleting a note sent
I return to the fusebox with a return

--> notelD: a PRIMARY KEY from the Notes table
--> RFA_completion: a FUSEACTION to return to the fusebox

++> DSN: an APPLICATION var of ODBC DATASOURCE

<h3>1"m #GetFileFromPath(GetCurrentTemplatePath())#, but I™m

LISTING 2

<cfparam name="attributes.fuseaction” default=""">
<l--- The file myGlobals is where | store all my app-specif-
<cfinclude template=""myGlobals.cfm”>

<l--- Fuseaction defines the app"s behavior --->

</cfoutput>
<l--- This custom tag takes the whitespace out of the docs </cfcatch>
generated by ColdFusion ---> </cfoutput>
<cf_stripWhitespace>
<I--- And now to trap any errors... ---> LERL?
<cftry> </cfoutput>
<I--- Part of the Fusebox spec is to convert all variables

www. ColdFusionJournal.com

<I-- The current fuseaction is #attributes.fuseaction# -->
<cfswitch expression = “#attributes.fuseaction#”>

<cfdefaultcase>

I received a fuseaction called “#attributes.fuseaction#”
that hasn’t been implemented yet.
</cfdefaultcase>

</cfswitch>
</cfoutput>
<l-—- In case we get an error --->

<cfoutput>

<cfcatch type="any”>

Whoops! There was an internal error.

Actually, it"s probably something YOU did to screw
things up!! <p>

Here®s info on the error:

<cfoutput>

Fuseaction: #attributes.fuseaction#

Type: #CFCATCH.Type#

Message: #CFCATCH.Message#

Detail: #CFCATCH.Detai l#

</cf_stripWhitespace>

The code listing for
this article can also be located at

www.ColdFusionJdournal.com

FEBRUARY CFDJ 51

ADVERTISINGHNIBI=)¢

ABLE SOLUTIONS WWW.ABLECOMMERCE.COM | 360.253.4142 | 2

ADHOST
ALLAIRE
BIZNIZ WEB
CATOUZER
DATARETURN
DIGITAL NATION
EKTRON
ENHANCED TECHNOLOGIES
ENTERACT
ENTERPRISE USA
EPRISE
INFOBOARD

INTERMEDIA

ISITE DESIGN

ON-LINE DATA SOLUTIONS

RSW SOFTWARE
SD 2000

SHIFT4
SITEHOSTING.NET
VIRTUALSCAPE

52 CFDJ FEBRUARY

WWW.ADHOST.COM
WWW.ALLAIRE.COM

WWW.WEBPUBLISHINGTOOLS.COM

WWW.CATOUZER.COM
WWW.DATARETURN.COM

WWW.DEDICATEDSERVER.COM

WWW.EKTRON.COM
WWW.ENHTECH.COM
WWW.ENTERACT.COM

WWW.ENTERPRISEUSA.COM

WWW.EPRISE.COM
WWW.INFOBOARD.COM
WWW.INTERMEDIA.NET
WWW.ISITEDESIGN.COM
WWW.COOLFUSION.COM

WWW.RSWSOFTWARE.COM
WWW.SDEXPO.COM

WWW.SHIFT4.COM

WWW.SITEHOSTING.NET
WWW.VIRTUALSCAPE.COM

888 ADHOST-1 26
888.939.2545 19232529
281.367.4016 | 52

| 2,45
604.662.7551 | 55
800.767.1514 | 4
703.642.2800 3
603.594.0249 | 9
800.368.3249 = 43
312.955.3000 | 11
248.888.1473 43
800.274.2814 | 15
800.514.2297 | 53
650.424.9935 | 56
888.269.9103 | 47
516.737.4668 | 54
508.435.8000 = 27

|
800.265.5795 | 13
888.463.6168 | 37
212.460.8406 | 39

in the Industry!

1-800-513-7111
WWW.SYS-CON.com

Able Solutions

Enter the realm of browsable store building and administration - from your
browser. Build “your_site.com” with secure Merchant Credit Card Processing.
Maintain inventory, add discounts and specials to keep your customers coming
back. Increase sales with cross selling and membership pricing.
11700 NE 95th Street, Suite 100, Vancouver, WA
www.ablecommerce.com ¢ 360 253-4142

SEnEWSR . i
URLISHING

terpeg . PURLISHING
1Ishing

5

z Hig Buck=? Heavy Web Expertise? 3
& Oiperaticns Mightmare? .
% It elevesr ¥ Fierve per e tlienr vy
& www.webpublishingtools.com E
B local portals city guides calandars classifieds

Adhost Internet Advertising

Adhost provides complete web hosting solutions for over twelve hundred
business clients. Small firms to multi-nationals, startups to long established com-
panies - every business with which we do business receives the unparalleled
level of service and range of products that has set Adhost Internet apart from
the pack since 1995.
400 108th Avenue NE, Suite 700, Bellevue, WA 98004
www.adhost.com ¢ (888) ADHOST-1

Catouzer

Catouzer develops web-based intranet and Customer Relationship Manage-
ment software solutions. With Synergy 2.0, Catouzer continues its lead in
providing secure web-based work environments. ColdFusion developers now
have the most advanced framework to develop secure web-based projects.
www.catouzer.com ¢ 604 662-7551

Data Return Corporation

Data Return offers extensive support for customers utilizing ColdFusion from
Allaire. With customers delivering over 50,000 user sessions per day, we know
how to provide high availability solutions for this advanced application server.
Our technical support staff has extensive experience in coding custom ColdFu-
sion Tags as well as managing Microsoft SQL server. We also support CyberCash
for customers interested in real-time credit card processing. Our combination of
support and experience offer an ideal environment for deploying your applica-
tions developed for ColdFusion.
801 Stadium Dr., Ste 117, Arlington, TX 76011
www.datareturn.com ¢ 800 767-1514

digitalNATION - a VERIO company

digitalNATION, VERIO's Advanced Hosting Division, is the world's leading
provider of dedicated server hosting, with over 1,650 servers online today. dN's
superior connected network and service abilities have earned dN a solid reputa-
tion as a first-choice provider of dedicated server solutions (Sun, Windows NT,
Linux and Cobalt). digitaNATION has been providing online and network ser-
vices for over six years. One of the first ISPs to provide dedicated servers run-
ning Microsoft Windows NT, the dN staff has unparalleled experience in this
industry.
5515 Cherokee Ave, Alexandria, VA 22312-2309
www.dedicatedserver.com ¢ 703 642-2800

Ektron

Ektron supports the next-generation needs of e-businesses by providing
dynamic Web infrastructure solution tools designed for use by nontechnical staff.
Ektron's flagship offering, eContentManager, gives staff members across an orga-
nization the hands-on ability to make real-time additions and updates to Web
content without requiring knowledge of a programming language -- while still
allowing for centralized administrative control and security. With competitive
advantages such as ease-of-integration and drag & drop everything, Ektron is
looking to provide these empowering products to customers, resellers and inte-
grators.

5 Northern Blvd., Suite 6, Amherst, NH 03031
www.ektron.com ¢ 603-594-0249

ot ol Gl S T T

Enhanced Technlogies

Enhanced Technologies is a state of the art Web Consulting, Develop-
ment, and Marketing provider built on the principles of ease of use,
strength of service, and power of presentation. ETI is not just another firm
offering Web development services. We are a professional Web Develop-
ment company with many more services and capabilities than most of our
competitors. We offer HTML (Hypertext) design, Web graphics design, and
CGlI programming, but we also offer 3D graphics, inline, Java, and Macro-
media Director animation.
6422 Grovedale Dr., Suite 301E, Alexandria, VA 22310
www.enhtech.com ¢ 800-368-3249

EnterAct

EnterAct is the Business Services Group of 21st Century Telecom -
Chicago's only single-source, facilities-based provider of bundled telecom-
munications. Combine this with EnterAct's excellent customer service and
technical support and it's easy to see why EnterAct is the premier Internet
Service Provider in lllinois.
407 S. Dearborn, 6th Floor, Chicago, IL 60605
www.enteract.com ¢ 312-955-3000

Enterprise USA, Inc.

Enterprise USA is a software product and computer consulting firm
based in the Metropolitan Detroit area of Michigan, with offices in Farm-
ington and Lansing. Enterprise USA specializes in providing computer con-
sultants for Internet development, Linux and the Microsoft product line. In
particular they provide supplemental staffing of computer programmers,
help desk professionals, network integration specialists, and project man-
agers.

33425 Grand River Ave, Suite 201, Farmington, Ml 48335
www.enterpriseUSA.com « 248 888-1473

NetFast

NetFast strives to become the foremost leader in Web application soft-
ware. Our applications empower and enable function-building efforts of
Web developers and designers. These ready-to-use software components
can be bundled into existing Intranet and Internet sites to increase usabili-
ty, drive traffic and differentiate online offerings. The fusion of application
development and hosting provides substantial revenue opportunities for
VARs and integrators of NetFast products.

6699 Port West Drive, Suite. 130, Houston, TX 77024
www.netfast.net « 800 362-9004

On-Line Data Solutions

CoolFusion.com is dedicated to providing unique and powerful add-on
solutions for ColdFusion development and implementation. The site is
hosted and maintained by On-Line Data Solutions, Inc. — a leader in Cold-
Fusion integration. Our ColdFusion integration products line is called inFu-
sion — a combination of "infuse™ and ColdFusion. For information about
our flagship product, inFusion Mail Server, we invite you to read the online
information (where you can also download the latest beta) and join the
inFusion Mail Server support list.

24 EIm Street, Centereach, NY 11720-1706
www.coolfusion.com ¢ 516 737-4668

RSW Software

RSW Software is a wholly owned subsidiary of Teradyne, Inc., and spe-
cializes in Web application testing software. Established with the goal of
providing best-in-class testing products, RSW offers a suite of products
called the e-TEST Suite, which automates the process of testing business-
critical Internet and intranet applications.
44 Spring Street, Second Floor, Watertown, MA 02172
www.rswsoftware.com ¢ 508 435-8000

Eprise Corporation

If your customers are looking for a content management solution,
Eprise Participant Server FastStart Kit for Allaire ColdFusion developers can
save you time and resources. Participant Server is a flexible-content man-
agement framework that enhances high-value business relationships
through the delivery of timely, targeted, Web-based communications.
1671 Worcester Road, Framingham, MA 01701
www.eprise.com ¢ 800 274-2814

Nighdigle peir wel=ar witk

£ infoboard

Tl LITLR
Dol Foisibinin | Divitaing

D lispumeeni Canpsuliing
Oiraede, Infsrmiz, MESL E-Csmmaoree Mug-ins

1 45005142297

w ilesinkaironrd oon
Farimmr

vy, b [okwoid oo

Intermedia, Inc.

Our advanced virtual hosting packages (powered by Microsoft Win-
dows NT and Internet Information Server 4.0) offer an environment sup-
porting everything today’s advanced Web developer or sophisticated client
could ask for. Complete ODBC support is available on plans B and C. We
support Microsoft Index Server on all hosting plans.

953 Industrial Avenue, Suite 121, Palo Alto, CA 94303
www.intermedia.net ¢ 650 424-9935

ISITE Design
ISITE Design is a customer-focused New Media firm celebrating two
years of serving the Portland, San Francisco and Los Angeles markets. Our
diverse team provides a full range of services for our clients. From concep-
tualization and original art generation to database integration and online
marketing, our team is poised to provide your organization with the high-
est level of customer service and results.
615 SW Broadway Ste. 200, Portland, OR 97205
www.isitedesign.com www.buyspectra.com ¢ 888-269-9103

SHIFT4 Corporation

Shift4 Corporation is a leading provider of credit card and transaction
processing software utilized by merchants and application developers in
various industries. Shift4 products facilitate the point-of-sale and account-
ing functions associated with electronic payment media, including credit
cards, debit cards, purchase cards, specialty cards, private label cards and
electronic check clearing. More than 2,000 customers worldwide utilize
Shift4 software to process over 85 million credit card transactions annually.
8691 W. Sahara Ave., Las Vegas, NV 89117-5830
www.shiftd.com « 800 265-5795

Sitehosting.NET

Successful electronic commerce starts at SiteHosting.net; a division of
Dynatek Infoworld, Inc., which provides total Web development services.
We offer personal and efficient customer service with reliability at value
prices. All our plans include access to SSL (Secure Socket Layer). We sup-
port ColdFusion, Active Server Pages, Real Audio/Video, Netshow Server,
and more. Our hosting price starts at $14.95/month.
13200 Crossroads Parkway North, Suite 360, City of Industry, CA 91746
www.sitehosting.net 877 684-6784

Virtualscape

Why host with Virtualscape? Nobody else on the Internet understands
what it takes to host ColdFusion like we do. Virtualscape is the leader in
advanced Web site hosting. From Fortune 500 extranets to e-commerce
sites and more, developers recognize our speed, stability, reliability and
technical support.
215 Park Avenue South, Suite 1905, New York, NY 10003
www.virtualscape.com ¢ 212 460-8406

To place an ad in the
ColdFusion Marketplace
contact Robyn Forma at
914 735-0300

i Allaire cus-
i tomers with secure high-avail-
i ability data access and integra-
tion across Linux-based Web
i applications.

¢ www.allaire.com www.merant.com

MERANT

£ 4

¢ Allaire Adds New VP to

. Executive Management Team
: (Cambridge, MA) - Allaire Corpo-
i ration has announced the addi- :
i tion of George Favaloro to its

© senior management team. With
i nearly 20 years of experience, :
i this industry veteran will provide :
considerable depth and experi- :
i ence to Allaire’s executive roster.

As vice president of business

: development, Favaloro will man-
i age Allaire’s emerging business
i strategy formulation group, the
¢ mergers and acquisitions team,

£ 4

i Atomic Software Promotes
i Interface for ColdFusion
(Alpharetta, GA) - For its Internet
i CF_iAuthorizerCC, is available
: for download at Allaire’s devel-
FiAuthorizer opers exchange site.
i www.iAuthorizer.com &

i payment service, iAuthorizer,
i Atomic Software
© announces the

i availability of a custom tag for

(Vancouver, WA) — AbleCommerce

has launched TopSites.com, a

showcase of the Web's top stores.
www.topsites.com provides a

dynamic search engine or

“mall” of the wide range of

shopping sites that have /

been built and are

administered with

AbleCommerce. The listing \,\

is a free service to AbleCom-
merce storeowners.

© that the iAuthorizer service pro-
i vides to e-commerce-enable a
¢ Web site.

The interface, called

AbleCommerce Announces TopSites.com

A few of the well-known com-

panies listed at TopSites.com are
Bushnell, CITGO, Cummins

Engine, Dixie Chicks,
Edwin Watts Golf
Shops, Garth Brooks,
George Strait, New
England Patriots,
Smith & Wesson, and
Victorinox Swiss Army
Knives.
www.ablesolutions.com

B r n J “ e WS) D D D
Allaire Acquires Valto Systems i gy with the new Linux versions | and strategic partnerships i ColdFusion. The tag allows a
(Cambridge, MA) — Allaire Corpo- : of ColdFusion, i account team. Web developer to integrate the
ration has acquired Valto Sys- i empowering < ¢ www.allaire.com i real-time credit card processing
tems, a pioneer in EJB server ' 5
technology. The acquisition fur-
ther expands Allaire’s position in
the emerging e-business plat-
form market. Fi | -
Under the "lv i 't
terms of the awng
agreement, Valto’s employees
will immediately be a part of
Allaire Corporation. Allaire plans
to continue selling Valto’s prod-
uct, Ejipt 1.2, and to release a
public beta of the next genera-
tion of Ejipt this month.
www.allaire.com _www.valto.com %,
Allaire Partners with MERANT
(Mountain View, CA / Newbury,
England) - MERANT has
announced an agreement with
Allaire Corporation to integrate
MERANT's DataDirect technolo-

BiznizWeb

www.webpublishingtools.com

Online Data

aolutions

www.coolfusion.com

Infoboard

www.infoboard.com

54 CFDJ FEBRUARY www.ColdFusionJournal.com

Gatouzer

Www.catouzer.com

www. ColdFusionJournal.com

FEBRUARY CFDJ

55

ol Famor, Wyisk Powrehy. Cyteelms w0 2w

HT wm

Coosrgni mersaain AT inc HRE 4 Mghs Mesered

NT WEB HOSTING

Nt

FREE D'E-"’p?

Unlimited Email accounts
Unlimited traffic/bandwidth BRRAY %‘{f_::ﬂf.

New! Clockwork Mail ﬂ-ﬂ‘t« A S
Manage email from your browser

NT Hosting with IS 4.0
MS SQL Sarver 7.0, Accass, FoxPro Instant Control!
Active Server Pages

Front Page 98 and 2000 Add domains
Cold Fusion 4.01 Add di
S5L Secure Server disk s
Shopping Carts: Storefront, Drumbeat Add email accounts

ECommearce Add mailing lists
CyberCash, PaymentNet Register Cold Fusion Custem Tags
WebhTrends Statistics Rlﬂlﬂ‘ll‘ ODBC

Reseller Program Available Register Active X DLL and OCX

sign up online

and'activate your account in 10 minutes
lIl www.intermedia.net

lvlerifuedia MET, Ind.

=800.379.7729

